Goursat distribution and sub-Riemannian structures

被引:8
|
作者
Anzaldo-Meneses, A [1 ]
Monroy-Pérez, F [1 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Ciencias Basicas, Mexico City 02200, DF, Mexico
关键词
D O I
10.1063/1.1625417
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the Lie group whose action leaves invariant the sub-Riemannian structures associated with Goursat systems and Euclidean metrics. The group naturally contains the Heisenberg group, the nilpotent group associated with the Martinet case, and the group corresponding to systems of Engel type. We compute also the Casimir functions of the associated nilpotent Poisson algebra. Our results generalize previous works on this problem of nonholonomic systems. A particular physical problem described by our model is the motion of electric charges in certain static inhomogeneous magnetic fields. We define a new algebraic curve in total space and compute two examples of sub-Riemannian extremals in cotangent space. (C) 2003 American Institute of Physics.
引用
收藏
页码:6101 / 6111
页数:11
相关论文
共 50 条
  • [11] Helical CR structures and sub-Riemannian geodesics
    D'Angelo, John P.
    Tyson, Jeremy T.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (3-4) : 205 - 221
  • [12] Sub-Riemannian structures in other problems of analysis
    Lanconelli, E
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8B (02): : 273 - 298
  • [13] On extensions of sub-Riemannian structures on Lie groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 46 : 25 - 38
  • [14] Stochastic sub-Riemannian geodesics on the Grushin distribution
    Calin, Ovidiu
    Udriste, Constantin
    Tevy, Ionel
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 37 - 49
  • [15] Sub-Riemannian structures in a principal bundle and their Popp measures
    Bauer, Wolfram
    Furutani, Kenro
    Iwasaki, Chisato
    [J]. APPLICABLE ANALYSIS, 2017, 96 (14) : 2390 - 2407
  • [16] Sub-Riemannian (2, 3, 5, 6)-Structures
    Yu. L. Sachkov
    E. F. Sachkova
    [J]. Doklady Mathematics, 2021, 103 : 61 - 65
  • [17] On Integrability of Certain Rank 2 Sub-Riemannian Structures
    Kruglikov, Boris S.
    Vollmer, Andreas
    Lukes-Gerakopoulos, Georgios
    [J]. REGULAR & CHAOTIC DYNAMICS, 2017, 22 (05): : 502 - 519
  • [18] SUB-RIEMANNIAN GEOMETRY
    STRICHARTZ, RS
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (02) : 221 - 263
  • [19] Sub-Riemannian geometry
    Kupka, I
    [J]. ASTERISQUE, 1997, (241) : 351 - 380
  • [20] On integrability of certain rank 2 sub-Riemannian structures
    Boris S. Kruglikov
    Andreas Vollmer
    Georgios Lukes-Gerakopoulos
    [J]. Regular and Chaotic Dynamics, 2017, 22 : 502 - 519