Goursat distribution and sub-Riemannian structures

被引:8
|
作者
Anzaldo-Meneses, A [1 ]
Monroy-Pérez, F [1 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Ciencias Basicas, Mexico City 02200, DF, Mexico
关键词
D O I
10.1063/1.1625417
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the Lie group whose action leaves invariant the sub-Riemannian structures associated with Goursat systems and Euclidean metrics. The group naturally contains the Heisenberg group, the nilpotent group associated with the Martinet case, and the group corresponding to systems of Engel type. We compute also the Casimir functions of the associated nilpotent Poisson algebra. Our results generalize previous works on this problem of nonholonomic systems. A particular physical problem described by our model is the motion of electric charges in certain static inhomogeneous magnetic fields. We define a new algebraic curve in total space and compute two examples of sub-Riemannian extremals in cotangent space. (C) 2003 American Institute of Physics.
引用
收藏
页码:6101 / 6111
页数:11
相关论文
共 50 条
  • [41] Sub-Riemannian interpolation inequalities
    Davide Barilari
    Luca Rizzi
    [J]. Inventiones mathematicae, 2019, 215 : 977 - 1038
  • [42] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [43] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [44] Paths in sub-Riemannian geometry
    Jean, F
    [J]. NONLINEAR CONTROL IN THE YEAR 2000, VOL 1, 2000, 258 : 569 - 574
  • [45] Sub-Riemannian Engel Sphere
    Sachkov, Yu L.
    Popov, A. Yu
    [J]. DOKLADY MATHEMATICS, 2021, 104 (02) : 301 - 305
  • [46] A problem of sub-Riemannian geometry
    Petrov, NN
    [J]. DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 911 - 916
  • [47] Topics in sub-Riemannian geometry
    Agrachev, A. A.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (06) : 989 - 1019
  • [48] About sub-Riemannian spheres
    Rifford, L.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (03) : 521 - 526
  • [49] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    [J]. Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [50] Front Asymptotics of a Flat Sub-Riemannian Structure on the Engel Distribution
    I. A. Bogaevsky
    [J]. Proceedings of the Steklov Institute of Mathematics, 2023, 321 : 54 - 68