Goursat distribution and sub-Riemannian structures

被引:8
|
作者
Anzaldo-Meneses, A [1 ]
Monroy-Pérez, F [1 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Ciencias Basicas, Mexico City 02200, DF, Mexico
关键词
D O I
10.1063/1.1625417
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the Lie group whose action leaves invariant the sub-Riemannian structures associated with Goursat systems and Euclidean metrics. The group naturally contains the Heisenberg group, the nilpotent group associated with the Martinet case, and the group corresponding to systems of Engel type. We compute also the Casimir functions of the associated nilpotent Poisson algebra. Our results generalize previous works on this problem of nonholonomic systems. A particular physical problem described by our model is the motion of electric charges in certain static inhomogeneous magnetic fields. We define a new algebraic curve in total space and compute two examples of sub-Riemannian extremals in cotangent space. (C) 2003 American Institute of Physics.
引用
收藏
页码:6101 / 6111
页数:11
相关论文
共 50 条
  • [31] A Note on Hyperbolic Flows in Sub-Riemannian Structures with Transverse Symmetries
    Li, Chengbo
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 117 (01) : 71 - 91
  • [32] On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures
    Barilari, D.
    Chitour, Y.
    Jean, F.
    Prandi, D.
    Sigalotti, M.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 133 : 118 - 138
  • [33] Sub-Riemannian structures on 3D lie groups
    Agrachev, A.
    Barilari, D.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (01) : 21 - 44
  • [34] Curvature in sub-Riemannian geometry
    Bejancu, Aurel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [35] ON THE SHORTEST SUB-RIEMANNIAN GEODESICS
    PETROV, NN
    [J]. DIFFERENTIAL EQUATIONS, 1994, 30 (05) : 705 - 711
  • [36] Sub-Riemannian Engel Sphere
    Yu. L. Sachkov
    A. Yu. Popov
    [J]. Doklady Mathematics, 2021, 104 : 301 - 305
  • [37] Sub-Riemannian interpolation inequalities
    Barilari, Davide
    Rizzi, Luca
    [J]. INVENTIONES MATHEMATICAE, 2019, 215 (03) : 977 - 1038
  • [38] Symmetries of sub-Riemannian surfaces
    Arteaga B, Jose Ricardo
    Malakhaltsev, Mikhail Armenovich
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 290 - 308
  • [39] Subanalyticity of the sub-Riemannian distance
    Jacquet S.
    [J]. Journal of Dynamical and Control Systems, 1999, 5 (3) : 303 - 328
  • [40] Sub-Riemannian Cartan Sphere
    Sachkov, Yu. L.
    [J]. DOKLADY MATHEMATICS, 2022, 106 (03) : 462 - 466