Paths in sub-Riemannian geometry

被引:0
|
作者
Jean, F [1 ]
机构
[1] Ecole Natl Suprieure Tech Avances, Lab Math Appl, F-75739 Paris 15, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In sub-Riemannian geometry only horizontal paths - i.e. tangent to the distribution - can have finite length. The aim of this talk is to study non-horizontal paths, in particular to measure them and give their metric dimension. For that we introduce two metric invariants, the entropy and the complexity, and corresponding measures of the paths depending on a small parameter epsilon. We give estimates for the entropy and the complexity, and a condition for these quantities to be equivalent. The estimates depend on a epsilon -norm on the tangent space, which tends to the sub-Riemannian metric as epsilon goes to zero. The results are based on an estimation of sub-Riemannian balls depending uniformly of their radius.
引用
收藏
页码:569 / 574
页数:6
相关论文
共 50 条
  • [1] Measures of transverse paths in sub-Riemannian geometry
    Falbel, E
    Jean, F
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 91 (1): : 231 - 246
  • [2] Measures of transverse paths in sub-Riemannian geometry
    Elisha Falbel
    Frédéric Jean
    Journal d’Analyse Mathématique, 2003, 91 : 231 - 246
  • [3] Bicycle paths, elasticae and sub-Riemannian geometry
    Ardentov, Andrei
    Bor, Gil
    Le Donne, Enrico
    Montgomery, Richard
    Sachkov, Yuri
    NONLINEARITY, 2021, 34 (07) : 4661 - 4683
  • [4] Sub-Riemannian geometry
    Kupka, I
    ASTERISQUE, 1997, (241) : 351 - 380
  • [5] SUB-RIEMANNIAN GEOMETRY
    STRICHARTZ, RS
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (02) : 221 - 263
  • [6] Curvature in sub-Riemannian geometry
    Bejancu, Aurel
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [7] A problem of sub-Riemannian geometry
    Petrov, NN
    DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 911 - 916
  • [8] Topics in sub-Riemannian geometry
    Agrachev, A. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (06) : 989 - 1019
  • [9] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483
  • [10] Sub-Riemannian geometry and nonholonomic mechanics
    Bejancu, Aurel
    ALEXANDRU MYLLER MATHEMATICAL SEMINAR, 2011, 1329 : 16 - 25