Homogeneous geodesics in sub-Riemannian geometry*

被引:3
|
作者
Podobryaev, Alexey [1 ]
机构
[1] RAS, Syst Inst, AK Ailamazyan Program, Pereslavl Zalesskiy, Russia
基金
俄罗斯科学基金会;
关键词
Homogeneous space; isometry; geodesic; geodesic orbit manifold; integration; weakly symmetric spaces; Riemannian geometry; sub-Riemannian geometry; Carnot group; geometric control theory; SHORTEST ARCS; CUT LOCUS; MANIFOLDS; SPACES;
D O I
10.1051/cocv/2022086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study homogeneous geodesics of sub-Riemannian manifolds, i.e., normal geodesics that are orbits of one-parametric subgroups of isometries. We obtain a criterion for a geodesic to be homogeneous in terms of its initial momentum. We prove that any weakly commutative sub-Riemannian homogeneous space is geodesic orbit, that means all geodesics are homogeneous. We discuss some examples of geodesic orbit sub-Riemannian manifolds. In particular, we show that geodesic orbit Carnot groups are only groups of step 1 and 2. Finally, we get a broad condition for existence of at least one homogeneous geodesic.
引用
收藏
页码:1473 / 1483
页数:17
相关论文
共 50 条
  • [1] Branching Geodesics in Sub-Riemannian Geometry
    Mietton, Thomas
    Rizzi, Luca
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1139 - 1151
  • [2] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    [J]. Geometric and Functional Analysis, 2020, 30 : 1139 - 1151
  • [3] Introduction to geodesics in sub-Riemannian geometry
    Agrachev, Andrei
    Barilari, Davide
    Boscain, Ugo
    [J]. GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 1 - 83
  • [4] Characterizations of Hamiltonian geodesics in sub-riemannian geometry
    Alcheikh M.
    Orro P.
    Pelletier F.
    [J]. Journal of Dynamical and Control Systems, 1997, 3 (3) : 391 - 418
  • [5] Shortest and straightest geodesics in sub-Riemannian geometry
    Alekseevsky, Dmitri
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [6] THE PROBLEM OF GEODESICS IN SINGULAR SUB-RIEMANNIAN GEOMETRY
    PELLETIER, F
    BOUCHE, LV
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (01): : 71 - 76
  • [7] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Arguillere, Sylvain
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2897 - 2938
  • [8] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Sylvain Arguillère
    [J]. The Journal of Geometric Analysis, 2020, 30 : 2897 - 2938
  • [9] Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane
    Yu. L. Sachkov
    [J]. Differential Equations, 2021, 57 : 1550 - 1554
  • [10] Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane
    Sachkov, Yu L.
    [J]. DIFFERENTIAL EQUATIONS, 2021, 57 (11) : 1550 - 1554