Helical CR structures and sub-Riemannian geodesics

被引:2
|
作者
D'Angelo, John P. [1 ]
Tyson, Jeremy T. [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
higher curvature; proper holomorphic mapping; homogeneous polynomial; Heisenberg group; sub-Riemannian geodesic; Carnot group; helical CR structure; HIGHER CURVATURES; NILPOTENT GROUPS; GEOMETRY; CURVES; SPACE;
D O I
10.1080/17476930902763801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A helical CR structure is a decomposition of a real Euclidean space into an even-dimensional horizontal subspace and its orthogonal vertical complement, together with an almost complex structure on the horizontal space and a marked vector in the vertical space. We prove an equivalence between such structures and step-two Carnot groups equipped with a distinguished normal geodesic, and also between such structures and smooth real curves whose derivatives have constant Euclidean norm. As a consequence, we relate step-two Carnot groups equipped with sub-Riemannian geodesics with this family of curves. The restriction to the unit circle of certain planar homogeneous polynomial mappings gives an instructive class of examples. We describe these examples in detail.
引用
收藏
页码:205 / 221
页数:17
相关论文
共 50 条
  • [1] ON THE SHORTEST SUB-RIEMANNIAN GEODESICS
    PETROV, NN
    [J]. DIFFERENTIAL EQUATIONS, 1994, 30 (05) : 705 - 711
  • [2] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [3] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483
  • [4] Regularity results for sub-Riemannian geodesics
    Monti, Roberto
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 549 - 582
  • [5] Branching Geodesics in Sub-Riemannian Geometry
    Mietton, Thomas
    Rizzi, Luca
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1139 - 1151
  • [6] Regularity results for sub-Riemannian geodesics
    Roberto Monti
    [J]. Calculus of Variations and Partial Differential Equations, 2014, 49 : 549 - 582
  • [7] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    [J]. Geometric and Functional Analysis, 2020, 30 : 1139 - 1151
  • [8] The regularity problem for sub-Riemannian geodesics
    Monti, Roberto
    [J]. GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY, 2014, 4 : 313 - 332
  • [9] Introduction to geodesics in sub-Riemannian geometry
    Agrachev, Andrei
    Barilari, Davide
    Boscain, Ugo
    [J]. GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 1 - 83
  • [10] Sub-Riemannian Geodesics on the Multidimensional Heisenberg Group
    Panzhenskii V.I.
    Surina O.P.
    [J]. Journal of Mathematical Sciences, 2023, 276 (4) : 541 - 551