Regularity results for sub-Riemannian geodesics

被引:15
|
作者
Monti, Roberto [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
53C17; 49K30;
D O I
10.1007/s00526-012-0592-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study length minimality of abnormal curves in rank 2 sub-Riemannian manifolds of polynomial type. As a corollary, we prove a regularity result for Carnot-Carath,odory geodesics in a class of rank 2 Carnot groups.
引用
收藏
页码:549 / 582
页数:34
相关论文
共 50 条
  • [1] Regularity results for sub-Riemannian geodesics
    Roberto Monti
    [J]. Calculus of Variations and Partial Differential Equations, 2014, 49 : 549 - 582
  • [2] The regularity problem for sub-Riemannian geodesics
    Monti, Roberto
    [J]. GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY, 2014, 4 : 313 - 332
  • [3] End-point equations and regularity of sub-Riemannian geodesics
    Leonardi, Gian Paolo
    Monti, Roberto
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (02) : 552 - 582
  • [4] Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
    Giambò, R
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1926 - 1931
  • [5] Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
    Giambò, R
    Gianoni, F
    Piccione, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) : 1840 - 1857
  • [6] End-Point Equations and Regularity of Sub-Riemannian Geodesics
    Gian Paolo Leonardi
    Roberto Monti
    [J]. Geometric and Functional Analysis, 2008, 18 : 552 - 582
  • [7] ON THE SHORTEST SUB-RIEMANNIAN GEODESICS
    PETROV, NN
    [J]. DIFFERENTIAL EQUATIONS, 1994, 30 (05) : 705 - 711
  • [8] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [9] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483
  • [10] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    [J]. Geometric and Functional Analysis, 2020, 30 : 1139 - 1151