Helical CR structures and sub-Riemannian geodesics

被引:2
|
作者
D'Angelo, John P. [1 ]
Tyson, Jeremy T. [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
higher curvature; proper holomorphic mapping; homogeneous polynomial; Heisenberg group; sub-Riemannian geodesic; Carnot group; helical CR structure; HIGHER CURVATURES; NILPOTENT GROUPS; GEOMETRY; CURVES; SPACE;
D O I
10.1080/17476930902763801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A helical CR structure is a decomposition of a real Euclidean space into an even-dimensional horizontal subspace and its orthogonal vertical complement, together with an almost complex structure on the horizontal space and a marked vector in the vertical space. We prove an equivalence between such structures and step-two Carnot groups equipped with a distinguished normal geodesic, and also between such structures and smooth real curves whose derivatives have constant Euclidean norm. As a consequence, we relate step-two Carnot groups equipped with sub-Riemannian geodesics with this family of curves. The restriction to the unit circle of certain planar homogeneous polynomial mappings gives an instructive class of examples. We describe these examples in detail.
引用
收藏
页码:205 / 221
页数:17
相关论文
共 50 条
  • [31] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [32] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [33] SUB-RIEMANNIAN GEODESICS ASSOCIATED TO CR-GEOMETRY ON HEISENBERG GROUP H3
    Frolik, Stanislav
    Hrdina, Jaroslav
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (04): : 55 - 66
  • [34] Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics in
    Mashtakov, A.
    Duits, R.
    Sachkov, Yu.
    Bekkers, E. J.
    Beschastnyi, I.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (02) : 239 - 264
  • [35] Quadratic sufficient minimality conditions for abnormal sub-Riemannian geodesics
    Dmitruk A.V.
    [J]. Journal of Mathematical Sciences, 2001, 104 (1) : 779 - 829
  • [36] On sub-Riemannian geodesics on the Engel groups: Hamilton's equations
    Adams, Malcolm R.
    Tie, Jingzhi
    [J]. MATHEMATISCHE NACHRICHTEN, 2013, 286 (14-15) : 1381 - 1406
  • [37] Sub-Riemannian geodesics and heat operator on odd dimensional spheres
    Molina, Mauricio Godoy
    Markina, Irina
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (02) : 123 - 147
  • [38] Sub-Riemannian Geodesics in the Octonionic H-type Group
    Autenried, Christian
    Godoy Molina, Mauricio
    [J]. ANALYSIS, MODELLING, OPTIMIZATION, AND NUMERICAL TECHNIQUES, 2015, 121 : 113 - 126
  • [39] Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
    Giambò, R
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1926 - 1931
  • [40] Sub-Riemannian metrics: Minimality of abnormal geodesics versus subanalyticity
    Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina ul. 8, 117966 Moscow, Russia
    不详
    不详
    [J]. Control Optimisation Calc. Var., 4 (377-403):