Sub-Riemannian Geodesics in the Octonionic H-type Group

被引:0
|
作者
Autenried, Christian [1 ]
Godoy Molina, Mauricio [1 ,2 ]
机构
[1] Univ Bergen, Dept Math, Bergen, Norway
[2] Univ La Frontera, Dept Matemat & Estadist, Temuco 4780000, Chile
关键词
H-type group; First variation of length; Sub-Riemannian geodesics; Geodesic equation; AREA-STATIONARY SURFACES; FORMS;
D O I
10.1007/978-3-319-12583-1_8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter, we study sub-Riemannian geodesics in the octonionic H-type group G(7)(1), which is a nilpotent group of step 2 and, as a manifold, diffeomorphic to R-15. The Lie group structure of G(7)(1), obtained via the Cayley-Dickson construction of real division algebras, induces a natural Riemannian metric and a bracket-generating distribution H of rank eight and step 2 on G(7)(1). Restricting the metric to H we obtain a sub-Riemannian structure on G(7)(1). The class of curves we are interested in are horizontal with respect to H and, most importantly, critical points of the natural sub-Riemannian length functional. We present a characterization of these critical points via a differential equation, similar to the geodesic equation in Riemannian geometry, which states that for critical points of the length functional the intrinsic acceleration del(gamma)gamma is a linear combination with constant coefficients of some special rotations of the velocity gamma.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 50 条
  • [1] The sub-Riemannian cut locus of H-type groups
    Autenried, Christian
    Godoy Molina, Mauricio
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (01) : 4 - 12
  • [2] Sub-Riemannian Geodesics on the Multidimensional Heisenberg Group
    Panzhenskii V.I.
    Surina O.P.
    [J]. Journal of Mathematical Sciences, 2023, 276 (4) : 541 - 551
  • [3] Characterisation of the sub-Riemannian isometry groups of H-type groups
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (01) : 87 - 100
  • [4] Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane
    Yu. L. Sachkov
    [J]. Differential Equations, 2021, 57 : 1550 - 1554
  • [5] Geodesics in the sub-Riemannian problem on the group SO(3)
    Beschastnyi, I. Yu.
    Sachkov, Yu. L.
    [J]. SBORNIK MATHEMATICS, 2016, 207 (07) : 915 - 941
  • [6] An Extrinsic Approach to Sub-Riemannian Geodesics on the Orthogonal Group
    Huper, Knut
    Markina, Irina
    Leite, Fatima Silva
    [J]. CONTROLO 2020, 2021, 695 : 274 - 283
  • [7] Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane
    Sachkov, Yu L.
    [J]. DIFFERENTIAL EQUATIONS, 2021, 57 (11) : 1550 - 1554
  • [8] ON THE SHORTEST SUB-RIEMANNIAN GEODESICS
    PETROV, NN
    [J]. DIFFERENTIAL EQUATIONS, 1994, 30 (05) : 705 - 711
  • [9] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [10] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483