Sub-Riemannian structures in other problems of analysis

被引:0
|
作者
Lanconelli, E [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some problems, ideas and techniques arising in the theory of Partial Differential Equations of Second Order with non-negative characteristic form and with underlying sub-riemannian structures. We show their development starting from the basic properties of classical harmonic and caloric functions. We stress their relationship with abstract potential theory and local regularity theory of solutions.
引用
收藏
页码:273 / 298
页数:26
相关论文
共 50 条
  • [1] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [2] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [3] Trivializable sub-Riemannian structures on spheres
    Bauer, W.
    Furutani, K.
    Iwasaki, C.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (03): : 361 - 385
  • [4] Goursat distribution and sub-Riemannian structures
    Anzaldo-Meneses, A
    Monroy-Pérez, F
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 6101 - 6111
  • [5] SUB-RIEMANNIAN STRUCTURES ON GROUPS OF DIFFEOMORPHISMS
    Arguillere, Sylvain
    Trelat, Emmanuel
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) : 745 - 785
  • [6] On the Heat Diffusion for Generic Riemannian and Sub-Riemannian Structures
    Barilari, Davide
    Boscain, Ugo
    Charlot, Gregoire
    Neel, Robert W.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (15) : 4639 - 4672
  • [7] Elastic Curves as Solutions of Riemannian and Sub-Riemannian Control Problems
    F. Silva Leite
    M. Camarinha
    P. Crouch
    [J]. Mathematics of Control, Signals and Systems, 2000, 13 (2) : 140 - 155
  • [8] Elastic curves as solutions of Riemannian and sub-Riemannian control problems
    Leite, FS
    Camarinha, M
    Crouch, P
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2000, 13 (02) : 140 - 155
  • [9] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [10] Riemannian and sub-Riemannian structures on a cotangent bundle of Heisenberg group
    Sukilovic, Tijana
    Vukmirovic, Srdjan
    [J]. FILOMAT, 2023, 37 (25) : 8481 - 8488