Sub-Riemannian structures in other problems of analysis

被引:0
|
作者
Lanconelli, E [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some problems, ideas and techniques arising in the theory of Partial Differential Equations of Second Order with non-negative characteristic form and with underlying sub-riemannian structures. We show their development starting from the basic properties of classical harmonic and caloric functions. We stress their relationship with abstract potential theory and local regularity theory of solutions.
引用
收藏
页码:273 / 298
页数:26
相关论文
共 50 条
  • [21] On integrability of certain rank 2 sub-Riemannian structures
    Boris S. Kruglikov
    Andreas Vollmer
    Georgios Lukes-Gerakopoulos
    [J]. Regular and Chaotic Dynamics, 2017, 22 : 502 - 519
  • [22] Riemannian and Sub-Riemannian Geodesic Flows
    Godoy Molina, Mauricio
    Grong, Erlend
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1260 - 1273
  • [23] Riemannian and Sub-Riemannian Geodesic Flows
    Mauricio Godoy Molina
    Erlend Grong
    [J]. The Journal of Geometric Analysis, 2017, 27 : 1260 - 1273
  • [24] Sub-Riemannian Geometric Analysis and PDE's
    D'Ambrosio, Lorenzo
    Garofalo, Nicola
    Lanconelli, Ermanno
    Lu, Guozhen
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 126 : 1 - 2
  • [25] Sub-Riemannian structures do not satisfy Riemannian Brunn-Minkowski inequalities
    Juillet, Nicolas
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (01) : 177 - 188
  • [26] On the equivalence of different types of local minima in sub-Riemannian problems
    Agrachev, AA
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2240 - 2243
  • [27] Sub-Riemannian (2,3,5,6)-Structures
    Sachkov, Yu. L.
    Sachkova, E. F.
    [J]. DOKLADY MATHEMATICS, 2021, 103 (01) : 61 - 65
  • [28] Symmetries of flat rank two distributions and sub-Riemannian structures
    Sachkov, YL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (02) : 457 - 494
  • [29] Sub-Riemannian structures on 3D lie groups
    A. Agrachev
    D. Barilari
    [J]. Journal of Dynamical and Control Systems, 2012, 18 : 21 - 44
  • [30] A note on sub-Riemannian structures associated with complex Hopf fibrations
    Li, Chengbo
    Zhan, Huaying
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 65 : 1 - 6