Sub-Riemannian structures do not satisfy Riemannian Brunn-Minkowski inequalities

被引:6
|
作者
Juillet, Nicolas [1 ,2 ]
机构
[1] Univ Strasbourg, IRMA UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67000 Strasbourg, France
关键词
Brunn-Minkowski inequality; normal geodesic; Ricci curvature; sub-Riemannian structure; METRIC-MEASURE-SPACES; CURVATURE;
D O I
10.4171/RMI/1205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that no Brunn-Minkowski inequality from the Riemannian theories of curvature-dimension and optimal transportation can be satisfied by a strictly sub-Riemannian structure. Our proof relies on the same method as for the Heisenberg group together with new investigations by Agrachev, Barilari and Rizzi on ample normal geodesics of sub-Riemannian structures and the geodesic dimension attached to them.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [1] POINCARE AND BRUNN-MINKOWSKI INEQUALITIES ON THE BOUNDARY OF WEIGHTED RIEMANNIAN MANIFOLDS
    Kolesnikov, Alexander, V
    Milman, Emanuel
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (05) : 1147 - 1185
  • [2] Sub-Riemannian interpolation inequalities
    Barilari, Davide
    Rizzi, Luca
    [J]. INVENTIONES MATHEMATICAE, 2019, 215 (03) : 977 - 1038
  • [3] Sub-Riemannian interpolation inequalities
    Davide Barilari
    Luca Rizzi
    [J]. Inventiones mathematicae, 2019, 215 : 977 - 1038
  • [4] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [5] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [6] The Brunn-Minkowski inequality implies the CD condition in weighted Riemannian manifolds
    Magnabosco, Mattia
    Portinale, Lorenzo
    Rossi, Tommaso
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 242
  • [7] On dual Brunn-Minkowski inequalities
    Zhao, CJ
    Pecaric, J
    Leng, GS
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (02): : 357 - 363
  • [8] GAUSSIAN BRUNN-MINKOWSKI INEQUALITIES
    Gardner, Richard J.
    Zvavitch, Artem
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (10) : 5333 - 5353
  • [9] On the Heat Diffusion for Generic Riemannian and Sub-Riemannian Structures
    Barilari, Davide
    Boscain, Ugo
    Charlot, Gregoire
    Neel, Robert W.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (15) : 4639 - 4672
  • [10] On Gaussian Brunn-Minkowski inequalities
    Barthe, Franck
    Huet, Nolwen
    [J]. STUDIA MATHEMATICA, 2009, 191 (03) : 283 - 304