Sub-Riemannian structures do not satisfy Riemannian Brunn-Minkowski inequalities

被引:6
|
作者
Juillet, Nicolas [1 ,2 ]
机构
[1] Univ Strasbourg, IRMA UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67000 Strasbourg, France
关键词
Brunn-Minkowski inequality; normal geodesic; Ricci curvature; sub-Riemannian structure; METRIC-MEASURE-SPACES; CURVATURE;
D O I
10.4171/RMI/1205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that no Brunn-Minkowski inequality from the Riemannian theories of curvature-dimension and optimal transportation can be satisfied by a strictly sub-Riemannian structure. Our proof relies on the same method as for the Heisenberg group together with new investigations by Agrachev, Barilari and Rizzi on ample normal geodesics of sub-Riemannian structures and the geodesic dimension attached to them.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [21] Riemannian and Sub-Riemannian Geodesic Flows
    Mauricio Godoy Molina
    Erlend Grong
    The Journal of Geometric Analysis, 2017, 27 : 1260 - 1273
  • [22] Dual cyclic Brunn-Minkowski inequalities
    Zhao, Chang-Jian
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (03) : 391 - 401
  • [23] Higher index symplectic capacities do not satisfy the symplectic Brunn-Minkowski inequality
    Kerman, Ely
    Liang, Yuanpu
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (01) : 27 - 38
  • [24] On the stability of Brunn-Minkowski type inequalities
    Colesanti, Andrea
    Livshyts, Galyna V.
    Marsiglietti, Arnaud
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) : 1120 - 1139
  • [25] Higher index symplectic capacities do not satisfy the symplectic Brunn-Minkowski inequality
    Ely Kerman
    Yuanpu Liang
    Israel Journal of Mathematics, 2021, 245 : 27 - 38
  • [26] Brunn-Minkowski and Zhang inequalities for convolution bodies
    Alonso-Gutierrez, David
    Hugo Jimenez, C.
    Villa, Rafael
    ADVANCES IN MATHEMATICS, 2013, 238 : 50 - 69
  • [27] Functional Brunn-Minkowski inequalities induced by polarity
    Artstein-Avidan, S.
    Florentin, D. I.
    Segal, A.
    ADVANCES IN MATHEMATICS, 2020, 364
  • [28] Stability of inequalities in the dual Brunn-Minkowski theory
    Gardner, RJ
    Vassallo, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (02) : 568 - 587
  • [29] Helical CR structures and sub-Riemannian geodesics
    D'Angelo, John P.
    Tyson, Jeremy T.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (3-4) : 205 - 221
  • [30] Sub-Riemannian geometry
    Kupka, I
    ASTERISQUE, 1997, (241) : 351 - 380