Sub-Riemannian structures do not satisfy Riemannian Brunn-Minkowski inequalities

被引:6
|
作者
Juillet, Nicolas [1 ,2 ]
机构
[1] Univ Strasbourg, IRMA UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67000 Strasbourg, France
关键词
Brunn-Minkowski inequality; normal geodesic; Ricci curvature; sub-Riemannian structure; METRIC-MEASURE-SPACES; CURVATURE;
D O I
10.4171/RMI/1205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that no Brunn-Minkowski inequality from the Riemannian theories of curvature-dimension and optimal transportation can be satisfied by a strictly sub-Riemannian structure. Our proof relies on the same method as for the Heisenberg group together with new investigations by Agrachev, Barilari and Rizzi on ample normal geodesics of sub-Riemannian structures and the geodesic dimension attached to them.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条