Liouville theorems for semilinear differential inequalities on sub-Riemannian manifolds

被引:0
|
作者
Wang, Bing [1 ]
Zhang, Hui-Chun [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, 135 Xingang Xi Rd, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Liouville theorem; Sub-Laplacian; Generalized curvature-dimension; condition; Sub-Riemannian manifold; LIFE-SPAN; BLOW-UP; EQUATIONS; EXISTENCE; BEHAVIOR; VOLUME;
D O I
10.1016/j.jfa.2023.110007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize Liouville type theorems for some semilinear partial differential inequalities to sub-Riemannian manifolds satisfying a nonnegative generalized curvature -dimension inequality introduced by Baudoin and Garofalo in [5]. In particular, our results apply to all Sasakian manifolds with nonnegative horizontal Webster-Tanaka-Ricci curvature. The key ingredient is to construct a class of "good" cut-off functions. We also provide some upper bounds for lifespan to parabolic and hyperbolic inequalities. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Liouville type theorems for systems of elliptic differential inequalities on Riemannian manifolds
    Xu, Fanheng
    Wang, Lifei
    Sun, Yuhua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 426 - 446
  • [2] Volume and distance comparison theorems for sub-Riemannian manifolds
    Baudoin, Fabrice
    Bonnefont, Michel
    Garofalo, Nicola
    Munive, Isidro H.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2005 - 2027
  • [3] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [4] Functional inequalities on path space of sub-Riemannian manifolds and applications
    Cheng, Li-Juan
    Grong, Erlend
    Thalmaier, Anton
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
  • [5] Holonomy of sub-Riemannian manifolds
    Falbel, E
    Gorodski, C
    Rumin, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (03) : 317 - 344
  • [6] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [7] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    [J]. Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [8] Sub-Riemannian interpolation inequalities
    Davide Barilari
    Luca Rizzi
    [J]. Inventiones mathematicae, 2019, 215 : 977 - 1038
  • [9] Sub-Riemannian interpolation inequalities
    Barilari, Davide
    Rizzi, Luca
    [J]. INVENTIONES MATHEMATICAE, 2019, 215 (03) : 977 - 1038
  • [10] Sub-Riemannian limit of the differential form spectrum of contact manifolds
    Rumin, M
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) : 407 - 452