Sub-Riemannian structures on 3D lie groups

被引:0
|
作者
A. Agrachev
D. Barilari
机构
[1] SISSA,
[2] Steklov Mathematical Institute,undefined
关键词
Sub-Riemannian geometry; Lie groups; left-invariant structures; 53C17; 22E30; 49J15;
D O I
暂无
中图分类号
学科分类号
摘要
We give a complete classification of left-invariant sub-Riemannian structures on three-dimensional Lie groups in terms of the basic differential invariants. As a consequence, we explicitly find a sub-Riemannian isometry between the nonisomorphic Lie groups SL(2) and A+(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R} $\end{document}) × S1, where A+(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R} $\end{document}) denotes the group of orientation preserving affine maps on the real line.
引用
收藏
页码:21 / 44
页数:23
相关论文
共 50 条
  • [1] Sub-Riemannian structures on 3D lie groups
    Agrachev, A.
    Barilari, D.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (01) : 21 - 44
  • [2] On extensions of sub-Riemannian structures on Lie groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 46 : 25 - 38
  • [3] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [4] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [5] Harmonic maps into sub-Riemannian Lie groups
    Grong, Erlend
    Markina, Irina
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03): : 515 - 532
  • [6] SUB-RIEMANNIAN STRUCTURES ON GROUPS OF DIFFEOMORPHISMS
    Arguillere, Sylvain
    Trelat, Emmanuel
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) : 745 - 785
  • [7] Sub-Riemannian distance in the Lie groups SU(2) and SO(3)
    Berestovskiĭ V.N.
    Zubareva I.A.
    [J]. Siberian Advances in Mathematics, 2016, 26 (2) : 77 - 89
  • [8] A Classification of Sub-Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. ACTA POLYTECHNICA HUNGARICA, 2013, 10 (07) : 41 - 52
  • [9] Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
    V. N. Berestovskii
    [J]. Siberian Mathematical Journal, 2018, 59 : 31 - 42
  • [10] LENGTH SPECTRA OF SUB-RIEMANNIAN METRICS ON COMPACT LIE GROUPS
    Domokos, Andras
    Krauel, Matthew
    Pigno, Vincent
    Shanbrom, Corey
    VanValkenburgh, Michael
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2018, 296 (02) : 321 - 340