On extensions of sub-Riemannian structures on Lie groups

被引:2
|
作者
Biggs, Rory [1 ]
Nagy, Peter T. [2 ]
机构
[1] Rhodes Univ, Dept Math, ZA-6140 Grahamstown, South Africa
[2] Obuda Univ, Inst Appl Math, Becsi Ut 96-b, H-1034 Budapest, Hungary
基金
新加坡国家研究基金会;
关键词
Sub-Riemannian geometry; Lie groups; Geodesics; METRICS; MOTIONS;
D O I
10.1016/j.difgeo.2016.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the extension of a left-invariant sub-Riemannian structure in terms of an extension of the underlying Lie group and compatibility of the respective distributions and metrics. We show that geodesics of a structure can be lifted to geodesics of any extension of the structure. In the case of central extensions, we show that the normal geodesics of the minimal extension are the projection (in a sense) of the normal geodesics of any other compatible extension. Several illustrative examples are discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:25 / 38
页数:14
相关论文
共 50 条
  • [1] Sub-Riemannian structures on 3D lie groups
    A. Agrachev
    D. Barilari
    Journal of Dynamical and Control Systems, 2012, 18 : 21 - 44
  • [2] Sub-Riemannian structures on 3D lie groups
    Agrachev, A.
    Barilari, D.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (01) : 21 - 44
  • [3] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [4] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [5] Harmonic maps into sub-Riemannian Lie groups
    Grong, Erlend
    Markina, Irina
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03): : 515 - 532
  • [6] SUB-RIEMANNIAN STRUCTURES ON GROUPS OF DIFFEOMORPHISMS
    Arguillere, Sylvain
    Trelat, Emmanuel
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) : 745 - 785
  • [7] A Classification of Sub-Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    ACTA POLYTECHNICA HUNGARICA, 2013, 10 (07) : 41 - 52
  • [8] Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
    V. N. Berestovskii
    Siberian Mathematical Journal, 2018, 59 : 31 - 42
  • [9] LENGTH SPECTRA OF SUB-RIEMANNIAN METRICS ON COMPACT LIE GROUPS
    Domokos, Andras
    Krauel, Matthew
    Pigno, Vincent
    Shanbrom, Corey
    VanValkenburgh, Michael
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 296 (02) : 321 - 340
  • [10] Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
    Berestovskii, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 31 - 42