On extensions of sub-Riemannian structures on Lie groups

被引:2
|
作者
Biggs, Rory [1 ]
Nagy, Peter T. [2 ]
机构
[1] Rhodes Univ, Dept Math, ZA-6140 Grahamstown, South Africa
[2] Obuda Univ, Inst Appl Math, Becsi Ut 96-b, H-1034 Budapest, Hungary
基金
新加坡国家研究基金会;
关键词
Sub-Riemannian geometry; Lie groups; Geodesics; METRICS; MOTIONS;
D O I
10.1016/j.difgeo.2016.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the extension of a left-invariant sub-Riemannian structure in terms of an extension of the underlying Lie group and compatibility of the respective distributions and metrics. We show that geodesics of a structure can be lifted to geodesics of any extension of the structure. In the case of central extensions, we show that the normal geodesics of the minimal extension are the projection (in a sense) of the normal geodesics of any other compatible extension. Several illustrative examples are discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 38
页数:14
相关论文
共 50 条
  • [11] Second Variation of Sub-Riemannian Surface Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups
    Santos, Maria R. B.
    Veloso, Jose M. M.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 721 - 756
  • [12] Second Variation of Sub-Riemannian Surface Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups
    Maria R. B. Santos
    José M. M. Veloso
    Journal of Dynamical and Control Systems, 2023, 29 : 721 - 756
  • [13] Sub-Riemannian distance in the Lie groups SU(2) and SO(3)
    Berestovskiĭ V.N.
    Zubareva I.A.
    Siberian Advances in Mathematics, 2016, 26 (2) : 77 - 89
  • [14] Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
    Mashtakov, A. P.
    Sachkov, Yu. L.
    DIFFERENTIAL EQUATIONS, 2015, 51 (11) : 1476 - 1483
  • [15] Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
    A. P. Mashtakov
    Yu. L. Sachkov
    Differential Equations, 2015, 51 : 1476 - 1483
  • [16] Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds
    Huang, Yonghong
    Sun, Shanzhong
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 91 - 114
  • [17] Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds
    Yonghong Huang
    Shanzhong Sun
    Frontiers of Mathematics in China, 2020, 15 : 91 - 114
  • [18] Trivializable sub-Riemannian structures on spheres
    Bauer, W.
    Furutani, K.
    Iwasaki, C.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (03): : 361 - 385
  • [19] Goursat distribution and sub-Riemannian structures
    Anzaldo-Meneses, A
    Monroy-Pérez, F
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 6101 - 6111
  • [20] On the Heat Diffusion for Generic Riemannian and Sub-Riemannian Structures
    Barilari, Davide
    Boscain, Ugo
    Charlot, Gregoire
    Neel, Robert W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (15) : 4639 - 4672