Trivializable sub-Riemannian structures on spheres

被引:3
|
作者
Bauer, W. [1 ]
Furutani, K. [2 ]
Iwasaki, C. [3 ]
机构
[1] Univ Gottingen, Math Inst, Gottingen, Germany
[2] Tokyo Univ Sci, Dept Math, Tokyo 162, Japan
[3] Univ Hyogo, Dept Math, Kobe, Hyogo 6500044, Japan
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2013年 / 137卷 / 03期
基金
日本学术振兴会;
关键词
Sub-Laplacian; Clifford algebra; Spectrum; Jacobi polynomials; OPERATORS; GEOMETRY;
D O I
10.1016/j.bulsci.2012.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify the trivializable sub-Riemannian structures on odd-dimensional spheres S-N that are induced by a Clifford module structure of RN+1. The underlying bracket generating distribution is of step two and spanned by a set of global linear vector fields X-1, ... , X-m. As a result we show that such structures only exist in the cases where N = 3, 7, 15. The corresponding hypo-elliptic sub-Laplacians Delta(sub) are defined as the (negative) sum of squares of the vector fields X-j. In the case of a trivializable rank four distribution on S-7 and a trivializable rank eight distribution on S-15 we obtain a part of the spectrum of Delta(sub). We also remark that in both cases there is a relation between the eigenfunctions and Jacobi polynomials. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:361 / 385
页数:25
相关论文
共 50 条
  • [1] About sub-Riemannian spheres
    Rifford, L.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (03) : 521 - 526
  • [2] Sub-Riemannian geometry of parallelizable spheres
    Molina, Mauricio Godoy
    Markina, Irina
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (03) : 997 - 1022
  • [3] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [4] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [5] Subanalyticity of distance and spheres in sub-Riemannian geometry
    Agrachev, A
    Gauthier, JP
    [J]. NONLINEAR CONTROL IN THE YEAR 2000, VOL 1, 2000, 258 : 1 - 8
  • [6] SUB-RIEMANNIAN STRUCTURES ON GROUPS OF DIFFEOMORPHISMS
    Arguillere, Sylvain
    Trelat, Emmanuel
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) : 745 - 785
  • [7] Goursat distribution and sub-Riemannian structures
    Anzaldo-Meneses, A
    Monroy-Pérez, F
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 6101 - 6111
  • [8] On the Heat Diffusion for Generic Riemannian and Sub-Riemannian Structures
    Barilari, Davide
    Boscain, Ugo
    Charlot, Gregoire
    Neel, Robert W.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (15) : 4639 - 4672
  • [9] Non-subanalyticity of sub-Riemannian Martinet spheres
    Trélat, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (06): : 527 - 532
  • [10] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198