SUB-RIEMANNIAN STRUCTURES ON GROUPS OF DIFFEOMORPHISMS

被引:4
|
作者
Arguillere, Sylvain [1 ]
Trelat, Emmanuel [2 ,3 ]
机构
[1] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[2] UPMC Univ Paris 06, Sorbonne Univ, CNRS UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Inst Univ France, F-75005 Paris, France
关键词
group of diffeomorphisms; sub-Riemannian geometry; normal geodesics; abnormal geodesics; reachability; Moser theorems; SOBOLEV METRICS; EQUATIONS; SPACES;
D O I
10.1017/S1474748015000249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define and study strong right-invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold with bounded geometry. We derive the Hamiltonian geodesic equations for such structures, and we provide examples of normal and of abnormal geodesics in that infinite-dimensional context. The momentum formulation gives a sub -Riemannian version of the Euler-Arnol'd equation. Finally, we establish some approximate and exact reachability properties for diffeomorphisms, and we give some consequences for Moser theorems.
引用
收藏
页码:745 / 785
页数:41
相关论文
共 50 条
  • [1] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [2] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [3] A Classification of Sub-Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. ACTA POLYTECHNICA HUNGARICA, 2013, 10 (07) : 41 - 52
  • [4] On extensions of sub-Riemannian structures on Lie groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 46 : 25 - 38
  • [5] Sub-Riemannian structures on 3D lie groups
    A. Agrachev
    D. Barilari
    [J]. Journal of Dynamical and Control Systems, 2012, 18 : 21 - 44
  • [6] Sub-Riemannian structures on 3D lie groups
    Agrachev, A.
    Barilari, D.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (01) : 21 - 44
  • [7] Trivializable sub-Riemannian structures on spheres
    Bauer, W.
    Furutani, K.
    Iwasaki, C.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (03): : 361 - 385
  • [8] Goursat distribution and sub-Riemannian structures
    Anzaldo-Meneses, A
    Monroy-Pérez, F
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 6101 - 6111
  • [9] On the Heat Diffusion for Generic Riemannian and Sub-Riemannian Structures
    Barilari, Davide
    Boscain, Ugo
    Charlot, Gregoire
    Neel, Robert W.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (15) : 4639 - 4672
  • [10] Polynomial sub-Riemannian differentiability on Carnot groups
    M. B. Karmanova
    [J]. Doklady Mathematics, 2016, 94 : 663 - 666