Second Variation of Sub-Riemannian Surface Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups

被引:0
|
作者
Maria R. B. Santos
José M. M. Veloso
机构
[1] Departamento de Matemática,
[2] Universidade Federal do Amazonas,undefined
[3] Faculdade de Matemática,undefined
[4] Universidade Federal do Pará,undefined
关键词
Second variation; Sub-Riemannian measure; Non-horizontal submanifolds; Stratified groups; Heisenberg group; Minimal surfaces; Stability; 53C17; 22E25; 28A75; 49Q15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the second variation of sub-Riemannian surface measure for minimal non-horizontal submanifolds of a sub-Riemannian stratified Lie group. We obtain some applications for codimension one. Furthermore, we present a new proof of the fact that the hyperbolic paraboloid is stable in the Heisenberg group.
引用
收藏
页码:721 / 756
页数:35
相关论文
共 50 条
  • [1] Second Variation of Sub-Riemannian Surface Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups
    Santos, Maria R. B.
    Veloso, Jose M. M.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 721 - 756
  • [2] First Variation of the Hausdorff Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups
    Diniz, Marcos M.
    Santos, Maria R. B.
    Veloso, Jose M. M.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (03) : 509 - 533
  • [3] First Variation of the Hausdorff Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups
    Marcos M. Diniz
    Maria R. B. Santos
    José M. M. Veloso
    [J]. Journal of Dynamical and Control Systems, 2017, 23 : 509 - 533
  • [4] Harmonic maps into sub-Riemannian Lie groups
    Grong, Erlend
    Markina, Irina
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03): : 515 - 532
  • [5] On extensions of sub-Riemannian structures on Lie groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 46 : 25 - 38
  • [6] VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY
    Hladky, Robert K.
    Pauls, Scott D.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (01): : 8 - 40
  • [7] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [8] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [9] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [10] SUB-RIEMANNIAN STRUCTURES ON GROUPS OF DIFFEOMORPHISMS
    Arguillere, Sylvain
    Trelat, Emmanuel
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) : 745 - 785