On Integrability of Certain Rank 2 Sub-Riemannian Structures

被引:3
|
作者
Kruglikov, Boris S. [1 ]
Vollmer, Andreas [2 ,3 ]
Lukes-Gerakopoulos, Georgios [4 ,5 ]
机构
[1] Univ Tromso, Inst Math & Stat, N-9037 Tromso, Norway
[2] Friedrich Schiller Univ, Math Inst, D-07737 Jena, Germany
[3] Politecn Torino, Dipartimento Sci Matemat, INdAM, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[4] Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, Prague 12116, Czech Republic
[5] Acad Sci Czech Republ, Astron Inst, Bocni 2 1401-1A, CZ-14131 Prague, Czech Republic
来源
REGULAR & CHAOTIC DYNAMICS | 2017年 / 22卷 / 05期
关键词
Sub-Riemannian geodesic flow; Killing tensor; integral; symmetry; Tanaka prolongation; overdetermined system of PDE; prolongation; GEODESIC-FLOWS; DISTRIBUTIONS; EQUATIONS; GEOMETRY;
D O I
10.1134/S1560354717050033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss rank 2 sub-Riemannian structures on low-dimensional manifolds and prove that some of these structures in dimensions 6, 7 and 8 have a maximal amount of symmetry but no integrals polynomial in momenta of low degrees, except for those coming from the Killing vector fields and the Hamiltonian, thus indicating nonintegrability of the corresponding geodesic flows.
引用
收藏
页码:502 / 519
页数:18
相关论文
共 50 条
  • [1] On integrability of certain rank 2 sub-Riemannian structures
    Boris S. Kruglikov
    Andreas Vollmer
    Georgios Lukes-Gerakopoulos
    [J]. Regular and Chaotic Dynamics, 2017, 22 : 502 - 519
  • [2] On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures
    Barilari, D.
    Chitour, Y.
    Jean, F.
    Prandi, D.
    Sigalotti, M.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 133 : 118 - 138
  • [3] Symmetries of flat rank two distributions and sub-Riemannian structures
    Sachkov, YL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (02) : 457 - 494
  • [4] Geodesics on a certain step 2 sub-Riemannian manifold
    Calin, O
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 22 (04) : 317 - 339
  • [5] LEFT-INVARIANT SUB-RIEMANNIAN ENGEL STRUCTURES: ABNORMAL GEODESICS AND INTEGRABILITY
    Beschastnyi, Ivan
    Medvedev, Alexandr
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3524 - 3537
  • [6] Geodesics on a Certain Step 2 Sub-Riemannian Manifold
    Ovidiu Calin
    [J]. Annals of Global Analysis and Geometry, 2002, 22 : 317 - 339
  • [7] Mass transportation on sub-Riemannian structures of rank two in dimension four
    Badreddine, Z.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (03): : 837 - 860
  • [8] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [9] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [10] Integrability of left-invariant sub-Riemannian structures on the special linear group SL 2(R)
    Mashtakov, A. P.
    Sachkov, Yu L.
    [J]. DIFFERENTIAL EQUATIONS, 2014, 50 (11) : 1541 - 1547