Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems

被引:0
|
作者
Méndez, GM [1 ]
Medina, MDH [1 ]
机构
[1] Inst Tecnol Nuevo Leon, Cd Guadalupe 67170, NL, Mexico
关键词
intelligent systems architectures; type-2 hybrid teaming; temperature type-2 modelling; type-2 fuzzy logic systems; hybrid teaming algorithms; applications on manufacturing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a new teaming methodology based on an hybrid algorithm for interval type-2 non-singleton type-2 fuzzy logic systems (FLS) parameters estimation. Using input-output data pairs during the forward pass of the training process, the interval type-2 FLS output is calculated and the consequent parameters are estimated by the orthogonal least-square (OLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by the backpropagation (BP) method. The proposed hybrid methodology was used to construct an interval type-2 fuzzy model capable of approximating the behavior of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at the finishing Scale Breaker (SB) entry zone. Comparative results show the advantage of the hybrid teaming method (OLS-BP) over that with only BP.
引用
下载
收藏
页码:386 / 391
页数:6
相关论文
共 50 条
  • [21] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [22] Comparing the Performance Potentials of Singleton and Non-singleton Type-1 and Interval Type-2 Fuzzy Systems in Terms of Sculpting the State Space
    Mendel, Jerry M.
    Chimatapu, Ravikiran
    Hagras, Hani
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (04) : 783 - 794
  • [23] Dynamic adaptation of the PID's gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
    Mendez, Gerardo M.
    Montes Dorantes, P. Noradino
    Aracelia Alcorta, M.
    SOFT COMPUTING, 2020, 24 (01) : 17 - 40
  • [24] On the Monotonicity of Interval Type-2 Fuzzy Logic Systems
    Li, Chengdong
    Yi, Jianqiang
    Zhang, Guiqing
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1197 - 1212
  • [25] Toolbox for Interval Type-2 Fuzzy Logic Systems
    Zamani, Mohsen
    Nejati, Hossein
    Jahromi, Amin T.
    Partovi, Ali Reza
    Nobari, Sadegh H.
    Shirazi, Ghasem N.
    PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2008,
  • [26] Simplified Interval Type-2 Fuzzy Logic Systems
    Mendel, Jerry M.
    Liu, Xinwang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) : 1056 - 1069
  • [27] Towards Comparing Adaptive Type-2 Input Based Non-Singleton Type-2 FLS and Non-Singleton FLSs Employing Gaussian Inputs
    Sahab, Nazanin
    Hagras, Hani
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [28] Intelligent systems with interval type-2 fuzzy logic
    Castillo, Oscar
    Melin, Patricia
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (04): : 771 - 783
  • [29] Designing Generalised Type-2 Fuzzy Logic Systems using Interval Type-2 Fuzzy Logic Systems and Simulated Annealing
    Almaraashi, Majid
    John, Robert
    Coupland, Simon
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [30] Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
    Gerardo M. Méndez
    P. Noradino Montes Dorantes
    M. Aracelia Alcorta
    Soft Computing, 2020, 24 : 17 - 40