Dynamic adaptation of the PID's gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm

被引:5
|
作者
Mendez, Gerardo M. [1 ]
Montes Dorantes, P. Noradino [2 ]
Aracelia Alcorta, M. [3 ]
机构
[1] Inst Tecnol Nuevo Leon, Av Eloy Cavazos 2001, Guadalupe, Nuevo Leon, Mexico
[2] Univ Autonoma Noreste UANE, Div Estudios Posgrad & Invest, Blvd Jose Musa de Leo & Gen Medardo de la Pena, Saltillo 25100, Coahuila, Mexico
[3] Univ Autonoma Nuevo Leon, Phys & Math Sch, Ave Univ S-N, San Nicolas De Los Garza 66455, Nuevo Leon, Mexico
关键词
IT2 fuzzy logic systems; PID control algorithm; Singleton numbers; Type-1 non-singleton numbers; PID IT2 fuzzy self-tuning; IT2; NSFLS-1; DERIVATIVE FILTER; CONTROLLER; DESIGN; ROBOT; AGC;
D O I
10.1007/s00500-019-04360-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controllers gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time (k), (1) the error e(k) and its standard deviation sigma e(k), and (2) the change of error Delta e(k) and its standard deviation sigma Delta e(k), to calculate the corresponding adjustment Delta KP(k), Delta KI(k), and Delta KD(k) for the PID controllers gains K-p(k), K-i(k), and K-d(k). The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time (k) by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler-Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.
引用
收藏
页码:17 / 40
页数:24
相关论文
共 50 条
  • [1] Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
    Gerardo M. Méndez
    P. Noradino Montes Dorantes
    M. Aracelia Alcorta
    [J]. Soft Computing, 2020, 24 : 17 - 40
  • [2] Contrasting Singleton Type-1 and Interval Type-2 Non-singleton Type-1 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Pourabdollah, Arnir
    Garibaldi, Jonathan M.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2043 - 2050
  • [3] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Leduc, Luis A.
    Hernandez, Maria de los Angeles
    [J]. PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 266 - +
  • [4] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Adolfo Leduc, Luis
    [J]. MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 81 - +
  • [5] Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems
    Méndez, GM
    Medina, MDH
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2005, : 386 - 391
  • [6] Finishing mill strip gage setup and control by interval type-1 non-singleton type-2 fuzzy logic systems
    Mendez, Gerardo M.
    Castillo, Oscar
    Colas, Rafael
    Moreno, Hector
    [J]. APPLIED SOFT COMPUTING, 2014, 24 : 900 - 911
  • [7] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    [J]. ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 36 - 44
  • [8] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    Hernandez, M. A.
    [J]. 2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 370 - 374
  • [9] Comparing the Performance Potentials of Singleton and Non-singleton Type-1 and Interval Type-2 Fuzzy Systems in Terms of Sculpting the State Space
    Mendel, Jerry M.
    Chimatapu, Ravikiran
    Hagras, Hani
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (04) : 783 - 794
  • [10] The Non-singleton Fuzzification Operation for General Forms of Interval Type-2 Fuzzy Logic Systems
    Ruiz, Gonzalo
    Pomares, Hector
    Rojas, Ignacio
    Hagras, Hani
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,