Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm

被引:0
|
作者
Gerardo M. Méndez
P. Noradino Montes Dorantes
M. Aracelia Alcorta
机构
[1] Instituto Tecnológico de Nuevo León,División de Estudios de Posgrado e Investigación
[2] Universidad Autónoma del Noreste (UANE),Physical and Mathematics School
[3] Universidad Autónoma de Nuevo León (UANL),undefined
来源
Soft Computing | 2020年 / 24卷
关键词
IT2 fuzzy logic systems; PID control algorithm; Singleton numbers; Type-1 non-singleton numbers; PID IT2 fuzzy self-tuning; IT2 NSFLS-1;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( \varvec{k} \right) $$\end{document}, (1) the error ek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{e}\left( \varvec{k} \right) $$\end{document} and its standard deviation σek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{\sigma e}\left( \varvec{k} \right) $$\end{document}, and (2) the change of error Δek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{e}\left( \varvec{k} \right) $$\end{document} and its standard deviation σΔek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{\sigma}\Delta \varvec{e}\left( \varvec{k} \right) $$\end{document}, to calculate the corresponding adjustment ΔKPk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{KP}\left( \varvec{k} \right) $$\end{document}, ΔKIk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{KI}\left( \varvec{k} \right) $$\end{document}, and ΔKDk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{KD}\left( \varvec{k} \right) $$\end{document} for the PID controller’s gains Kpk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{K}_{\varvec{p}} \left( \varvec{k} \right) $$\end{document}, Kik\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{K}_{\varvec{i}} \left( \varvec{k} \right) $$\end{document}, and Kdk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{K}_{\varvec{d}} \left( \varvec{k} \right) $$\end{document}. The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( \varvec{k} \right) $$\end{document} by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.
引用
收藏
页码:17 / 40
页数:23
相关论文
共 50 条
  • [1] Dynamic adaptation of the PID's gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
    Mendez, Gerardo M.
    Montes Dorantes, P. Noradino
    Aracelia Alcorta, M.
    [J]. SOFT COMPUTING, 2020, 24 (01) : 17 - 40
  • [2] Contrasting Singleton Type-1 and Interval Type-2 Non-singleton Type-1 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Pourabdollah, Arnir
    Garibaldi, Jonathan M.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2043 - 2050
  • [3] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Leduc, Luis A.
    Hernandez, Maria de los Angeles
    [J]. PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 266 - +
  • [4] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Adolfo Leduc, Luis
    [J]. MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 81 - +
  • [5] Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems
    Méndez, GM
    Medina, MDH
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2005, : 386 - 391
  • [6] Finishing mill strip gage setup and control by interval type-1 non-singleton type-2 fuzzy logic systems
    Mendez, Gerardo M.
    Castillo, Oscar
    Colas, Rafael
    Moreno, Hector
    [J]. APPLIED SOFT COMPUTING, 2014, 24 : 900 - 911
  • [7] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    [J]. ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 36 - 44
  • [8] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    Hernandez, M. A.
    [J]. 2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 370 - 374
  • [9] Comparing the Performance Potentials of Singleton and Non-singleton Type-1 and Interval Type-2 Fuzzy Systems in Terms of Sculpting the State Space
    Mendel, Jerry M.
    Chimatapu, Ravikiran
    Hagras, Hani
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (04) : 783 - 794
  • [10] The Non-singleton Fuzzification Operation for General Forms of Interval Type-2 Fuzzy Logic Systems
    Ruiz, Gonzalo
    Pomares, Hector
    Rojas, Ignacio
    Hagras, Hani
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,