First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems

被引:0
|
作者
Mendez, Gerardo M. [1 ]
Adolfo Leduc, Luis [2 ]
机构
[1] Inst Tecnol Nuevo Leon, Dept Elect & Electromech Engn, Eloy Cavazos 2001, Guadalupe 67170, NL, Mexico
[2] SA CV, Dept Process Engn Hylsa, Monterrey 67170, NL, Mexico
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents the implementation of first-order interval type-1 non-singleton type-2 TSK fuzzy logic system (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by back-propagation (BP) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated also by back-propagation. The proposed interval type-1 non-singleton type-2 TSK FLS system was used to construct a fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone, being able to compensate for uncertain measurements that first-order interval singleton type-2 TSK FLS can not do.
引用
收藏
页码:81 / +
页数:2
相关论文
共 50 条
  • [1] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Leduc, Luis A.
    Hernandez, Maria de los Angeles
    [J]. PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 266 - +
  • [2] Contrasting Singleton Type-1 and Interval Type-2 Non-singleton Type-1 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Pourabdollah, Arnir
    Garibaldi, Jonathan M.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2043 - 2050
  • [3] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    [J]. ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 36 - 44
  • [4] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    Hernandez, M. A.
    [J]. 2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 370 - 374
  • [5] Finishing mill strip gage setup and control by interval type-1 non-singleton type-2 fuzzy logic systems
    Mendez, Gerardo M.
    Castillo, Oscar
    Colas, Rafael
    Moreno, Hector
    [J]. APPLIED SOFT COMPUTING, 2014, 24 : 900 - 911
  • [6] Comparing the Performance Potentials of Singleton and Non-singleton Type-1 and Interval Type-2 Fuzzy Systems in Terms of Sculpting the State Space
    Mendel, Jerry M.
    Chimatapu, Ravikiran
    Hagras, Hani
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (04) : 783 - 794
  • [7] The Non-singleton Fuzzification Operation for General Forms of Interval Type-2 Fuzzy Logic Systems
    Ruiz, Gonzalo
    Pomares, Hector
    Rojas, Ignacio
    Hagras, Hani
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [8] Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems
    Méndez, GM
    Medina, MDH
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2005, : 386 - 391
  • [9] Multiobjective Optimization and Comparison of Nonsingleton Type-1 and Singleton Interval Type-2 Fuzzy Logic Systems
    Cara, Ana Belen
    Wagner, Christian
    Hagras, Hani
    Pomares, Hector
    Rojas, Ignacio
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (03) : 459 - 476
  • [10] On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems
    Wu, Dongrui
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (01) : 179 - 192