First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems

被引:0
|
作者
Mendez, Gerardo M. [1 ]
Adolfo Leduc, Luis [2 ]
机构
[1] Inst Tecnol Nuevo Leon, Dept Elect & Electromech Engn, Eloy Cavazos 2001, Guadalupe 67170, NL, Mexico
[2] SA CV, Dept Process Engn Hylsa, Monterrey 67170, NL, Mexico
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents the implementation of first-order interval type-1 non-singleton type-2 TSK fuzzy logic system (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by back-propagation (BP) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated also by back-propagation. The proposed interval type-1 non-singleton type-2 TSK FLS system was used to construct a fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone, being able to compensate for uncertain measurements that first-order interval singleton type-2 TSK FLS can not do.
引用
收藏
页码:81 / +
页数:2
相关论文
共 50 条
  • [31] Geometric type-1 and type-2 fuzzy logic systems
    Coupland, Simon
    John, Robert I.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 3 - 15
  • [32] On using type-1 fuzzy set mathematics to derive interval type-2 fuzzy logic systems
    Mendel, JM
    John, RI
    Liu, FL
    [J]. NAFIPS 2005 - 2005 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2005, : 528 - 533
  • [33] Model-based Fault Detection of a Nonlinear System Using Interval Type-2 Fuzzy Systems with Non-singleton Type-2 Fuzzification
    Monirvaghefi, Hossein
    Shoorehdeli, Mahdi Aliyari
    [J]. 2013 3RD INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2013, : 231 - 236
  • [34] Type-1 Non-singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Mechanism Composed by a Kalman Type Filter and Back Propagation Methods
    Mendez, Gerardo M.
    Hernandez, Angeles
    Cavazos, Alberto
    Mata-Jimenez, Marco-Tulio
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 429 - +
  • [35] Interval Type-2 Adaptive Network-based Fuzzy Inference System (ANFIS) with Type-2 non-singleton fuzzification
    MonirVaghefi, Hossein
    Sandgani, Mohsen Rafiee
    Shoorehdeli, Mahdi Aliyari
    [J]. 2013 13TH IRANIAN CONFERENCE ON FUZZY SYSTEMS (IFSC), 2013,
  • [36] High order type-2 TSK fuzzy logic system
    Ren, Qun
    Baron, Luc
    Balazinski, Marek
    [J]. 2008 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2, 2008, : 73 - 78
  • [37] A Systematic Design of Stabilizer Controller for Interval Type-2 TSK Fuzzy Logic Systems
    Pour, Majid Khak
    Ghaemi, Sehraneh
    Badamchizadeh, Mohammad Ali
    [J]. FUZZY INFORMATION AND ENGINEERING, 2018, 10 (04) : 387 - 407
  • [38] Online learning of an interval type-2 TSK fuzzy logic controller for nonlinear systems
    Khater, A. Aziz
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    El-Rabaie, Nabila M.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9254 - 9285
  • [39] Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm
    Méndez, GM
    Castillo, O
    [J]. FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 230 - 235
  • [40] JuzzyPy - A Python']Python Library to Create Type-1, Interval Type-2 and General Type-2 Fuzzy Logic Systems
    Ahmad, Mohammad Sameer
    Wagner, Christian
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 735 - 742