First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems

被引:0
|
作者
Mendez, Gerardo M. [1 ]
Adolfo Leduc, Luis [2 ]
机构
[1] Inst Tecnol Nuevo Leon, Dept Elect & Electromech Engn, Eloy Cavazos 2001, Guadalupe 67170, NL, Mexico
[2] SA CV, Dept Process Engn Hylsa, Monterrey 67170, NL, Mexico
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents the implementation of first-order interval type-1 non-singleton type-2 TSK fuzzy logic system (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by back-propagation (BP) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated also by back-propagation. The proposed interval type-1 non-singleton type-2 TSK FLS system was used to construct a fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone, being able to compensate for uncertain measurements that first-order interval singleton type-2 TSK FLS can not do.
引用
收藏
页码:81 / +
页数:2
相关论文
共 50 条
  • [21] Instability Conditions for Type-1 and Type-2 TSK Fuzzy Systems
    Jafarzadeh, Saeed
    Fadali, M. Sami
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1240 - 1247
  • [22] Dynamic adaptation of the PID's gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
    Mendez, Gerardo M.
    Montes Dorantes, P. Noradino
    Aracelia Alcorta, M.
    [J]. SOFT COMPUTING, 2020, 24 (01) : 17 - 40
  • [23] TSK Observers for Discrete Type-1 and Type-2 Fuzzy Systems
    Fadali, M. Sami
    Jafarzadeh, Saeed
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (02) : 451 - 458
  • [24] Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
    Gerardo M. Méndez
    P. Noradino Montes Dorantes
    M. Aracelia Alcorta
    [J]. Soft Computing, 2020, 24 : 17 - 40
  • [25] An approach for non-singleton generalized Type-2 fuzzy classifiers
    Ontiveros-Robles, Emanuel
    Castillo, Oscar
    Melin, Patricia
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 7203 - 7215
  • [26] The Monotonicity and Convexity of Unnormalized Interval Type-2 TSK Fuzzy Logic Systems
    Wang, Tiechao
    Yi, Jianqiang
    Li, Chengdong
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [27] Developing an Interval Type-2 TSK Fuzzy Logic Controller
    Enyinna, Nnamdi
    Karimoddini, Ali
    Opoku, Daniel
    Homaifar, Abdollah
    Arnold, Shannon
    [J]. 2015 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY DIGIPEN NAFIPS 2015, 2015,
  • [28] Observer Design for Discrete Type-1 and Type-2 TSK Fuzzy Systems
    Fadali, M. Sami
    Jafarzadeh, Saeed
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 5616 - 5621
  • [29] Research on Type-2 TSK Fuzzy Logic Systems
    Zheng, Gao
    Wang, Jing
    Jiang, Lin
    [J]. FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 491 - +
  • [30] Finishing mill thread speed set-up and control by interval type 1 non-singleton type 2 fuzzy logic systems
    Mendez, G. M.
    Colas, R.
    Leduc, L.
    Lopez-Juarez, I.
    Longoria, R.
    [J]. IRONMAKING & STEELMAKING, 2012, 39 (05) : 342 - 354