Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP

被引:4
|
作者
Mendez, G. M.
Hernandez, M. A.
机构
关键词
D O I
10.1109/FOCI.2007.371498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a new learning methodology based on a hybrid algorithm for interval type-1 non-singleton type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by the recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by the back-propagation (BP) method. The proposed hybrid methodology was used to construct an interval type-1 non-singleton type-2 TSK fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone. Comparative results show the performance of the hybrid learning method (RLS-BP) against the only BP learning method.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 50 条
  • [1] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    [J]. ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 36 - 44
  • [2] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Leduc, Luis A.
    Hernandez, Maria de los Angeles
    [J]. PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 266 - +
  • [3] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Adolfo Leduc, Luis
    [J]. MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 81 - +
  • [4] Contrasting Singleton Type-1 and Interval Type-2 Non-singleton Type-1 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Pourabdollah, Arnir
    Garibaldi, Jonathan M.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2043 - 2050
  • [5] Finishing mill strip gage setup and control by interval type-1 non-singleton type-2 fuzzy logic systems
    Mendez, Gerardo M.
    Castillo, Oscar
    Colas, Rafael
    Moreno, Hector
    [J]. APPLIED SOFT COMPUTING, 2014, 24 : 900 - 911
  • [6] Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems
    Méndez, GM
    Medina, MDH
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2005, : 386 - 391
  • [7] Comparing the Performance Potentials of Singleton and Non-singleton Type-1 and Interval Type-2 Fuzzy Systems in Terms of Sculpting the State Space
    Mendel, Jerry M.
    Chimatapu, Ravikiran
    Hagras, Hani
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (04) : 783 - 794
  • [8] A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems
    de los Angeles Hernandez, Maria
    Melin, Patricia
    Mendez, Gerardo M.
    Castillo, Oscar
    Lopez-Juarez, Ismael
    [J]. SOFT COMPUTING, 2015, 19 (03) : 661 - 678
  • [9] A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems
    María de los Angeles Hernandez
    Patricia Melin
    Gerardo M. Méndez
    Oscar Castillo
    Ismael López-Juarez
    [J]. Soft Computing, 2015, 19 : 661 - 678
  • [10] The Non-singleton Fuzzification Operation for General Forms of Interval Type-2 Fuzzy Logic Systems
    Ruiz, Gonzalo
    Pomares, Hector
    Rojas, Ignacio
    Hagras, Hani
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,