Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP

被引:4
|
作者
Mendez, G. M.
Hernandez, M. A.
机构
关键词
D O I
10.1109/FOCI.2007.371498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a new learning methodology based on a hybrid algorithm for interval type-1 non-singleton type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by the recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by the back-propagation (BP) method. The proposed hybrid methodology was used to construct an interval type-1 non-singleton type-2 TSK fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone. Comparative results show the performance of the hybrid learning method (RLS-BP) against the only BP learning method.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 50 条
  • [31] Developing an Interval Type-2 TSK Fuzzy Logic Controller
    Enyinna, Nnamdi
    Karimoddini, Ali
    Opoku, Daniel
    Homaifar, Abdollah
    Arnold, Shannon
    [J]. 2015 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY DIGIPEN NAFIPS 2015, 2015,
  • [32] Observer Design for Discrete Type-1 and Type-2 TSK Fuzzy Systems
    Fadali, M. Sami
    Jafarzadeh, Saeed
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 5616 - 5621
  • [33] Research on Type-2 TSK Fuzzy Logic Systems
    Zheng, Gao
    Wang, Jing
    Jiang, Lin
    [J]. FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 491 - +
  • [34] Finishing mill thread speed set-up and control by interval type 1 non-singleton type 2 fuzzy logic systems
    Mendez, G. M.
    Colas, R.
    Leduc, L.
    Lopez-Juarez, I.
    Longoria, R.
    [J]. IRONMAKING & STEELMAKING, 2012, 39 (05) : 342 - 354
  • [35] Geometric type-1 and type-2 fuzzy logic systems
    Coupland, Simon
    John, Robert I.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 3 - 15
  • [36] Interval Type-2 Adaptive Network-based Fuzzy Inference System (ANFIS) with Type-2 non-singleton fuzzification
    MonirVaghefi, Hossein
    Sandgani, Mohsen Rafiee
    Shoorehdeli, Mahdi Aliyari
    [J]. 2013 13TH IRANIAN CONFERENCE ON FUZZY SYSTEMS (IFSC), 2013,
  • [37] A Quantitative Comparison of Interval Type-2 and Type-1 Fuzzy Logic Systems: First Results
    Mendel, Jerry M.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [38] A Systematic Design of Stabilizer Controller for Interval Type-2 TSK Fuzzy Logic Systems
    Pour, Majid Khak
    Ghaemi, Sehraneh
    Badamchizadeh, Mohammad Ali
    [J]. FUZZY INFORMATION AND ENGINEERING, 2018, 10 (04) : 387 - 407
  • [39] Online learning of an interval type-2 TSK fuzzy logic controller for nonlinear systems
    Khater, A. Aziz
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    El-Rabaie, Nabila M.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9254 - 9285
  • [40] Hybrid Model for the Training of Interval Type-2 Fuzzy Logic System
    Hassan, Saima
    Khosravi, Abbas
    Jaafar, Jafreezal
    Khanesar, Mojtaba Ahmadieh
    [J]. NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 644 - 653