A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems

被引:0
|
作者
María de los Angeles Hernandez
Patricia Melin
Gerardo M. Méndez
Oscar Castillo
Ismael López-Juarez
机构
[1] Instituto Tecnológico de Nuevo León,Departamento de Ciencias Económico
[2] Instituto Tecnológico de Tijuana,Administrativas
[3] Instituto Tecnológico de Nuevo León,Division of Graduate Studies and Research
[4] Centro de Investigaciones y Estudios Avanzados del IPN Unidad Saltillo,Departamento de Ingeniería Eléctrica y Electrónica
来源
Soft Computing | 2015年 / 19卷
关键词
Hybrid learning method; Fuzzy intelligent prediction; Interval type-2 fuzzy logic for system identification; Nonlinear industrial process modeling and prediction;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to present a hybrid learning method for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic system that uses the recursive orthogonal least-squares algorithm to tune the type-1 consequent parameters, and the back-propagation algorithm to tune the interval type-2 antecedent parameters. Based on the combination of these two training algorithms the new hybrid learning method changes the interval type-2 fuzzy model parameters adaptively and minimizes the proposed error function as the new type-1 non-singleton input–output data pairs are processed. Its antecedent sets are interval type-2 fuzzy sets, its consequent sets are type-1 fuzzy sets, and its inputs are type-1 non-singleton fuzzy numbers with uncertain standard deviations. Comparison with the non-hybrid interval A2-C1 type-1 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic system that only uses the back-propagation algorithm for both antecedent and consequent parameter’s adaptation demonstrates that the proposed hybrid algorithm is a well-performing nonlinear adaptation that enables the interval type-2 fuzzy model to optimally match the nonlinear behavior of the process. The application of the interval type-2 fuzzy logic as adaptable predictor using the proposed hybrid learning method was constructed for the modeling and prediction of the transfer bar surface temperature in an industrial hot strip mill facility. Experimental results demonstrated that this method improves the temperature prediction performance of the interval A2-C1 type-1 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic system.
引用
下载
收藏
页码:661 / 678
页数:17
相关论文
共 40 条
  • [1] A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems
    de los Angeles Hernandez, Maria
    Melin, Patricia
    Mendez, Gerardo M.
    Castillo, Oscar
    Lopez-Juarez, Ismael
    SOFT COMPUTING, 2015, 19 (03) : 661 - 678
  • [2] Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods
    Mendez, Gerardo M.
    de los Angeles Hernandez, M.
    INFORMATION SCIENCES, 2009, 179 (13) : 2146 - 2157
  • [3] Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems
    Méndez, GM
    Medina, MDH
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2005, : 386 - 391
  • [4] Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems
    Mendez, Gerardo M.
    de los Angeles Hernandez, Maria
    INFORMATION SCIENCES, 2013, 220 : 149 - 169
  • [5] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Leduc, Luis A.
    Hernandez, Maria de los Angeles
    PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 266 - +
  • [6] First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems
    Mendez, Gerardo M.
    Adolfo Leduc, Luis
    MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 81 - +
  • [7] Contrasting Singleton Type-1 and Interval Type-2 Non-singleton Type-1 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Pourabdollah, Arnir
    Garibaldi, Jonathan M.
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2043 - 2050
  • [8] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 36 - 44
  • [9] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    Hernandez, M. A.
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 370 - 374
  • [10] Interval Type-2 Non-Singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Learning Mechanism Recursive-Least-Square and Back-Propagation Methods
    Mendez, Gerardo M.
    de los Angeles Hernandez, Maria
    11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 710 - 714