Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm

被引:0
|
作者
Gerardo M. Méndez
P. Noradino Montes Dorantes
M. Aracelia Alcorta
机构
[1] Instituto Tecnológico de Nuevo León,División de Estudios de Posgrado e Investigación
[2] Universidad Autónoma del Noreste (UANE),Physical and Mathematics School
[3] Universidad Autónoma de Nuevo León (UANL),undefined
来源
Soft Computing | 2020年 / 24卷
关键词
IT2 fuzzy logic systems; PID control algorithm; Singleton numbers; Type-1 non-singleton numbers; PID IT2 fuzzy self-tuning; IT2 NSFLS-1;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( \varvec{k} \right) $$\end{document}, (1) the error ek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{e}\left( \varvec{k} \right) $$\end{document} and its standard deviation σek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{\sigma e}\left( \varvec{k} \right) $$\end{document}, and (2) the change of error Δek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{e}\left( \varvec{k} \right) $$\end{document} and its standard deviation σΔek\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{\sigma}\Delta \varvec{e}\left( \varvec{k} \right) $$\end{document}, to calculate the corresponding adjustment ΔKPk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{KP}\left( \varvec{k} \right) $$\end{document}, ΔKIk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{KI}\left( \varvec{k} \right) $$\end{document}, and ΔKDk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta \varvec{KD}\left( \varvec{k} \right) $$\end{document} for the PID controller’s gains Kpk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{K}_{\varvec{p}} \left( \varvec{k} \right) $$\end{document}, Kik\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{K}_{\varvec{i}} \left( \varvec{k} \right) $$\end{document}, and Kdk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{K}_{\varvec{d}} \left( \varvec{k} \right) $$\end{document}. The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( \varvec{k} \right) $$\end{document} by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.
引用
收藏
页码:17 / 40
页数:23
相关论文
共 50 条
  • [21] A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems
    Castillo, Oscar
    Amador-Angulo, Leticia
    Castro, Juan R.
    Garcia-Valdez, Mario
    [J]. INFORMATION SCIENCES, 2016, 354 : 257 - 274
  • [22] A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems
    María de los Angeles Hernandez
    Patricia Melin
    Gerardo M. Méndez
    Oscar Castillo
    Ismael López-Juarez
    [J]. Soft Computing, 2015, 19 : 661 - 678
  • [23] A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems
    de los Angeles Hernandez, Maria
    Melin, Patricia
    Mendez, Gerardo M.
    Castillo, Oscar
    Lopez-Juarez, Ismael
    [J]. SOFT COMPUTING, 2015, 19 (03) : 661 - 678
  • [24] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Jonathan Perez
    Fevrier Valdez
    Oscar Castillo
    Patricia Melin
    Claudia Gonzalez
    Gabriela Martinez
    [J]. Soft Computing, 2017, 21 : 667 - 685
  • [25] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Perez, Jonathan
    Valdez, Fevrier
    Castillo, Oscar
    Melin, Patricia
    Gonzalez, Claudia
    Martinez, Gabriela
    [J]. SOFT COMPUTING, 2017, 21 (03) : 667 - 685
  • [26] Type-1 Non-singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Mechanism Composed by a Kalman Type Filter and Back Propagation Methods
    Mendez, Gerardo M.
    Hernandez, Angeles
    Cavazos, Alberto
    Mata-Jimenez, Marco-Tulio
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 429 - +
  • [27] HYBRID LEARNING ALGORITHM FOR INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS
    Mendez, G. M.
    Leduc, L. A.
    [J]. CONTROL AND INTELLIGENT SYSTEMS, 2006, 34 (03)
  • [28] Hybrid learning algorithm for interval type-2 fuzzy logic systems
    Departamento de Ingeniería, Eléctrica y Electrónica, Instituto Tecnológico de Nuevo Léon, Mexico
    不详
    [J]. Control Intell Syst, 2006, 3 (206-215):
  • [29] Optimization of fuzzy controller design using a Differential Evolution algorithm with dynamic parameter adaptation based on Type-1 and Interval Type-2 fuzzy systems
    Ochoa, Patricia
    Castillo, Oscar
    Soria, Jose
    [J]. SOFT COMPUTING, 2020, 24 (01) : 193 - 214
  • [30] Optimization of fuzzy controller design using a Differential Evolution algorithm with dynamic parameter adaptation based on Type-1 and Interval Type-2 fuzzy systems
    Patricia Ochoa
    Oscar Castillo
    José Soria
    [J]. Soft Computing, 2020, 24 : 193 - 214