A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems

被引:332
|
作者
Castillo, Oscar [1 ]
Amador-Angulo, Leticia [1 ]
Castro, Juan R. [1 ]
Garcia-Valdez, Mario [1 ]
机构
[1] Tijuana Inst Technol, Tijuana 22379, Mexico
关键词
Alpha plane representation; Fuzzy controller; Generalized type-2 fuzzy logic; Footprint uncertainty; ALPHA-PLANE REPRESENTATION; SETS THEORY; REDUCTION; ALGORITHM; ROBOT;
D O I
10.1016/j.ins.2016.03.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a comparative study of type-2 fuzzy logic systems with respect to interval type-2 and type-1 fuzzy logic systems to show the efficiency and performance of a generalized type-2 fuzzy logic controller (GT2FLC). We used different types of fuzzy logic systems for designing the fuzzy controllers of complex non-linear plants. The theory of alpha planes is used for approximating generalized type-2 fuzzy logic in fuzzy controllers. In the defuzzification process, the Karnik and Mendel Algorithm is used. Simulation results with a type-1 fuzzy logic controller (T1FLC), an interval type-2 fuzzy logic controller (IT2FLC) and with a generalized type-2 fuzzy logic controller (GT2FLC) for benchmark plants are presented. The advantage of using generalized type-2 fuzzy logic in fuzzy controllers is verified with four benchmark problems. We considered different levels of noise, number of alpha planes and four types of membership functions in the simulations for comparison and to analyze the approach of generalized type-2 fuzzy logic systems when applied in fuzzy control. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:257 / 274
页数:18
相关论文
共 50 条
  • [1] On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems
    Wu, Dongrui
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (01) : 179 - 192
  • [2] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [3] Geometric type-1 and type-2 fuzzy logic systems
    Coupland, Simon
    John, Robert I.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 3 - 15
  • [4] Type-2 fuzzy logic systems
    Karnik, NN
    Mendel, JM
    Liang, QL
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) : 643 - 658
  • [5] Designing Generalised Type-2 Fuzzy Logic Systems using Interval Type-2 Fuzzy Logic Systems and Simulated Annealing
    Almaraashi, Majid
    John, Robert
    Coupland, Simon
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [6] Examining the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems
    Wu, Dongrui
    Mendel, Jerry M.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [7] On Transitioning From Type-1 to Interval Type-2 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Garibaldi, Jonathan M.
    Pourabdollah, Amir
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [8] On the robustness of Type-1 and Interval Type-2 fuzzy logic systems in modeling
    Biglarbegian, Mohammad
    Melek, William
    Mendel, Jerry
    [J]. INFORMATION SCIENCES, 2011, 181 (07) : 1325 - 1347
  • [9] On the Monotonicity of Interval Type-2 Fuzzy Logic Systems
    Li, Chengdong
    Yi, Jianqiang
    Zhang, Guiqing
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1197 - 1212
  • [10] Toolbox for Interval Type-2 Fuzzy Logic Systems
    Zamani, Mohsen
    Nejati, Hossein
    Jahromi, Amin T.
    Partovi, Ali Reza
    Nobari, Sadegh H.
    Shirazi, Ghasem N.
    [J]. PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2008,