On the Monotonicity of Interval Type-2 Fuzzy Logic Systems

被引:65
|
作者
Li, Chengdong [1 ]
Yi, Jianqiang [2 ,3 ,4 ]
Zhang, Guiqing [1 ]
机构
[1] Shandong Jianzhu Univ, Sch Informat & Elect Engn, Jinan 250101, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] Comp Software Dev Co, Tokyo, Japan
[4] MYCOM Inc, Kyoto, Japan
基金
中国国家自然科学基金;
关键词
Data-driven method; fuzzy logic system; modeling and control; monotonicity; type-2; fuzzy; type-reduction and defuzzification method; MAMDANI-ASSILIAN MODELS; MEMBERSHIP FUNCTIONS; DESIGN; SETS; DEFUZZIFICATION; OPTIMIZATION; CONTROLLER; GENERATION; PI;
D O I
10.1109/TFUZZ.2013.2286416
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Qualitative knowledge is very useful for system modeling and control problems, especially when specific physical structure knowledge is unavailable and the number of training data points is small. This paper studies the incorporation of one common qualitative knowledge-monotonicity into interval type-2 (IT2) fuzzy logic systems (FLSs). Sufficient conditions on the antecedent and consequent parts of fuzzy rules are derived to guarantee the monotonicity between inputs and outputs. We take into account five type-reduction and defuzzification methods (the Karnik-Mendel method, the Du-Ying method, the Begian-Melek-Mendel method, the Wu-Tan method, and the Nie-Tan method). We show that IT2 FLSs are monotonic if the antecedent and consequents parts of their fuzzy rules are arranged according to the proposed monotonicity conditions. The derived monotonicity conditions are valid for the IT2 FLSs using any kind of IT2 fuzzy sets (FSs) (e.g., Trapezoidal IT2 FSs and Gaussian IT2 FSs) and stand for type-1 FLSs as well. Guidelines for applying the proposed conditions to modeling and control problems are also given. Our results will be useful in the design of monotonic IT2 FLSs for engineering applications when the monotonicity property is desired.
引用
收藏
页码:1197 / 1212
页数:16
相关论文
共 50 条
  • [1] The Monotonicity and Convexity of Unnormalized Interval Type-2 TSK Fuzzy Logic Systems
    Wang, Tiechao
    Yi, Jianqiang
    Li, Chengdong
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [2] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [3] Toolbox for Interval Type-2 Fuzzy Logic Systems
    Zamani, Mohsen
    Nejati, Hossein
    Jahromi, Amin T.
    Partovi, Ali Reza
    Nobari, Sadegh H.
    Shirazi, Ghasem N.
    [J]. PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2008,
  • [4] Simplified Interval Type-2 Fuzzy Logic Systems
    Mendel, Jerry M.
    Liu, Xinwang
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) : 1056 - 1069
  • [5] Intelligent systems with interval type-2 fuzzy logic
    Castillo, Oscar
    Melin, Patricia
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (04): : 771 - 783
  • [6] Designing Generalised Type-2 Fuzzy Logic Systems using Interval Type-2 Fuzzy Logic Systems and Simulated Annealing
    Almaraashi, Majid
    John, Robert
    Coupland, Simon
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [7] A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems
    Castillo, Oscar
    Amador-Angulo, Leticia
    Castro, Juan R.
    Garcia-Valdez, Mario
    [J]. INFORMATION SCIENCES, 2016, 354 : 257 - 274
  • [8] Interval type-2 fuzzy logic systems made simple
    Mendel, Jerry M.
    John, Robert I.
    Liu, Feilong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2006, 14 (06) : 808 - 821
  • [9] On the importance of interval sets in type-2 fuzzy logic systems
    Mendel, JM
    [J]. JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1647 - 1652
  • [10] Interval type-2 fuzzy logic systems: Theory and design
    Liang, QL
    Mendel, JM
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) : 535 - 550