Simplified Interval Type-2 Fuzzy Logic Systems

被引:161
|
作者
Mendel, Jerry M. [1 ]
Liu, Xinwang [2 ]
机构
[1] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Southeast Univ, Sch Econ & Management, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Defuzzification; interval type-2 fuzzy set (IT2 FS); Karnik-Mendel (KM) algorithms; Nie-Tan (NT) method; type reduction (TR); KARNIK-MENDEL ALGORITHMS; SETS; DESIGN;
D O I
10.1109/TFUZZ.2013.2241771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Type reduction (TR) followed by defuzzification is commonly used in interval type-2 fuzzy logic systems (IT2 FLSs). Because of the iterative nature of TR, it may be a computational bottleneck for the real-time applications of an IT2 FLS. This has led to many direct approaches to defuzzification that bypass TR, the simplest of which is the Nie-Tan direct defuzzification method (NT method). This paper provides some theoretical analyses of the NT method that answer the question "Why is the NT method good to use?" This paper also provides a direct relationship between TR followed by defuzzification (using KM algorithms) and the NT method. It also provides an improved NT method. Numerical examples illustrate our theoretical results and suggest that the NT method is a very good way to simplify an interval type-2 fuzzy set.
引用
收藏
页码:1056 / 1069
页数:14
相关论文
共 50 条
  • [1] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [2] On the Monotonicity of Interval Type-2 Fuzzy Logic Systems
    Li, Chengdong
    Yi, Jianqiang
    Zhang, Guiqing
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1197 - 1212
  • [3] Toolbox for Interval Type-2 Fuzzy Logic Systems
    Zamani, Mohsen
    Nejati, Hossein
    Jahromi, Amin T.
    Partovi, Ali Reza
    Nobari, Sadegh H.
    Shirazi, Ghasem N.
    [J]. PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2008,
  • [4] Intelligent systems with interval type-2 fuzzy logic
    Castillo, Oscar
    Melin, Patricia
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (04): : 771 - 783
  • [5] Designing Generalised Type-2 Fuzzy Logic Systems using Interval Type-2 Fuzzy Logic Systems and Simulated Annealing
    Almaraashi, Majid
    John, Robert
    Coupland, Simon
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [6] A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems
    Castillo, Oscar
    Amador-Angulo, Leticia
    Castro, Juan R.
    Garcia-Valdez, Mario
    [J]. INFORMATION SCIENCES, 2016, 354 : 257 - 274
  • [7] Interval type-2 fuzzy logic systems made simple
    Mendel, Jerry M.
    John, Robert I.
    Liu, Feilong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2006, 14 (06) : 808 - 821
  • [8] On the importance of interval sets in type-2 fuzzy logic systems
    Mendel, JM
    [J]. JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1647 - 1652
  • [9] Interval type-2 fuzzy logic systems: Theory and design
    Liang, QL
    Mendel, JM
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) : 535 - 550
  • [10] Computing derivatives in interval type-2 fuzzy logic systems
    Mendel, JM
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (01) : 84 - 98