On the Monotonicity of Interval Type-2 Fuzzy Logic Systems

被引:65
|
作者
Li, Chengdong [1 ]
Yi, Jianqiang [2 ,3 ,4 ]
Zhang, Guiqing [1 ]
机构
[1] Shandong Jianzhu Univ, Sch Informat & Elect Engn, Jinan 250101, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] Comp Software Dev Co, Tokyo, Japan
[4] MYCOM Inc, Kyoto, Japan
基金
中国国家自然科学基金;
关键词
Data-driven method; fuzzy logic system; modeling and control; monotonicity; type-2; fuzzy; type-reduction and defuzzification method; MAMDANI-ASSILIAN MODELS; MEMBERSHIP FUNCTIONS; DESIGN; SETS; DEFUZZIFICATION; OPTIMIZATION; CONTROLLER; GENERATION; PI;
D O I
10.1109/TFUZZ.2013.2286416
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Qualitative knowledge is very useful for system modeling and control problems, especially when specific physical structure knowledge is unavailable and the number of training data points is small. This paper studies the incorporation of one common qualitative knowledge-monotonicity into interval type-2 (IT2) fuzzy logic systems (FLSs). Sufficient conditions on the antecedent and consequent parts of fuzzy rules are derived to guarantee the monotonicity between inputs and outputs. We take into account five type-reduction and defuzzification methods (the Karnik-Mendel method, the Du-Ying method, the Begian-Melek-Mendel method, the Wu-Tan method, and the Nie-Tan method). We show that IT2 FLSs are monotonic if the antecedent and consequents parts of their fuzzy rules are arranged according to the proposed monotonicity conditions. The derived monotonicity conditions are valid for the IT2 FLSs using any kind of IT2 fuzzy sets (FSs) (e.g., Trapezoidal IT2 FSs and Gaussian IT2 FSs) and stand for type-1 FLSs as well. Guidelines for applying the proposed conditions to modeling and control problems are also given. Our results will be useful in the design of monotonic IT2 FLSs for engineering applications when the monotonicity property is desired.
引用
收藏
页码:1197 / 1212
页数:16
相关论文
共 50 条
  • [21] Hybrid learning algorithm for interval type-2 fuzzy logic systems
    Departamento de Ingeniería, Eléctrica y Electrónica, Instituto Tecnológico de Nuevo Léon, Mexico
    不详
    [J]. Control Intell Syst, 2006, 3 (206-215):
  • [22] Towards General Forms of Interval Type-2 Fuzzy Logic Systems
    Ruiz, Gonzalo
    Pomares, Hector
    Rojas, Ignacio
    Hagras, Hani
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1216 - 1223
  • [23] On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 798 - 818
  • [24] Consequent-oriented fuzzy inference: For interval type-2 fuzzy logic systems
    [J]. Yue, J.-M. (yjm@mail.nankai.edu.cn), 1600, South China University of Technology (30):
  • [25] Type-2 fuzzy logic systems
    Karnik, NN
    Mendel, JM
    Liang, QL
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) : 643 - 658
  • [26] Type-2 fuzzy logic systems
    Univ of Southern California, Los Angeles, United States
    [J]. IEEE Trans Fuzzy Syst, 6 (643-658):
  • [27] Examining the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems
    Wu, Dongrui
    Mendel, Jerry M.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [28] A Novel Type-Reduction Method for Interval Type-2 Fuzzy Logic Systems
    Li, Chengdong
    Yi, Jianqiang
    Zhao, Dongbin
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 157 - 161
  • [29] On Transitioning From Type-1 to Interval Type-2 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Garibaldi, Jonathan M.
    Pourabdollah, Amir
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [30] On the robustness of Type-1 and Interval Type-2 fuzzy logic systems in modeling
    Biglarbegian, Mohammad
    Melek, William
    Mendel, Jerry
    [J]. INFORMATION SCIENCES, 2011, 181 (07) : 1325 - 1347