Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems

被引:0
|
作者
Méndez, GM [1 ]
Medina, MDH [1 ]
机构
[1] Inst Tecnol Nuevo Leon, Cd Guadalupe 67170, NL, Mexico
关键词
intelligent systems architectures; type-2 hybrid teaming; temperature type-2 modelling; type-2 fuzzy logic systems; hybrid teaming algorithms; applications on manufacturing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a new teaming methodology based on an hybrid algorithm for interval type-2 non-singleton type-2 fuzzy logic systems (FLS) parameters estimation. Using input-output data pairs during the forward pass of the training process, the interval type-2 FLS output is calculated and the consequent parameters are estimated by the orthogonal least-square (OLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by the backpropagation (BP) method. The proposed hybrid methodology was used to construct an interval type-2 fuzzy model capable of approximating the behavior of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at the finishing Scale Breaker (SB) entry zone. Comparative results show the advantage of the hybrid teaming method (OLS-BP) over that with only BP.
引用
下载
收藏
页码:386 / 391
页数:6
相关论文
共 50 条
  • [31] Hybrid learning algorithm for interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 157 - 162
  • [32] A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems
    Castillo, Oscar
    Amador-Angulo, Leticia
    Castro, Juan R.
    Garcia-Valdez, Mario
    INFORMATION SCIENCES, 2016, 354 : 257 - 274
  • [33] A New Fuzzy Inference Technique for Singleton Type-2 Fuzzy Logic Systems
    Kwak, Hwan-Joo
    Kim, Dong-Won
    Park, Gwi-Tae
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2012, 9
  • [34] Interval Type-2 Fuzzy Logic Toolbox
    Castro, Juan R.
    Castillo, Oscar
    Martinez, Luis G.
    ENGINEERING LETTERS, 2007, 15 (01)
  • [35] Multiobjective Optimization and Comparison of Nonsingleton Type-1 and Singleton Interval Type-2 Fuzzy Logic Systems
    Cara, Ana Belen
    Wagner, Christian
    Hagras, Hani
    Pomares, Hector
    Rojas, Ignacio
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (03) : 459 - 476
  • [36] Interval type-2 fuzzy logic systems made simple
    Mendel, Jerry M.
    John, Robert I.
    Liu, Feilong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2006, 14 (06) : 808 - 821
  • [37] Interval type-2 fuzzy logic systems: Theory and design
    Liang, QL
    Mendel, JM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) : 535 - 550
  • [38] On the importance of interval sets in type-2 fuzzy logic systems
    Mendel, JM
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1647 - 1652
  • [39] Computing derivatives in interval type-2 fuzzy logic systems
    Mendel, JM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (01) : 84 - 98
  • [40] Type-2 fuzzy logic systems
    Karnik, NN
    Mendel, JM
    Liang, QL
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) : 643 - 658