Orthogonal-back propagation hybrid learning algorithm for interval type-2 non-singleton type-2 fuzzy logic systems

被引:0
|
作者
Méndez, GM [1 ]
Medina, MDH [1 ]
机构
[1] Inst Tecnol Nuevo Leon, Cd Guadalupe 67170, NL, Mexico
关键词
intelligent systems architectures; type-2 hybrid teaming; temperature type-2 modelling; type-2 fuzzy logic systems; hybrid teaming algorithms; applications on manufacturing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a new teaming methodology based on an hybrid algorithm for interval type-2 non-singleton type-2 fuzzy logic systems (FLS) parameters estimation. Using input-output data pairs during the forward pass of the training process, the interval type-2 FLS output is calculated and the consequent parameters are estimated by the orthogonal least-square (OLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by the backpropagation (BP) method. The proposed hybrid methodology was used to construct an interval type-2 fuzzy model capable of approximating the behavior of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at the finishing Scale Breaker (SB) entry zone. Comparative results show the advantage of the hybrid teaming method (OLS-BP) over that with only BP.
引用
下载
收藏
页码:386 / 391
页数:6
相关论文
共 50 条
  • [41] Type-2 fuzzy logic systems
    Univ of Southern California, Los Angeles, United States
    IEEE Trans Fuzzy Syst, 6 (643-658):
  • [42] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    Sharan, S.
    Sharma, B. K.
    Jacob, Kavikumar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1505 - 1526
  • [43] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    S. Sharan
    B. K. Sharma
    Kavikumar Jacob
    Journal of Applied Mathematics and Computing, 2022, 68 : 1505 - 1526
  • [44] A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    INFORMATION SCIENCES, 2009, 179 (13) : 2175 - 2193
  • [45] Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications
    Sahab, N.
    Hagras, H.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2011, 6 (03) : 503 - 529
  • [46] A New Look at Type-2 Fuzzy Sets and Type-2 Fuzzy Logic Systems
    Wang, Li-Xin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (03) : 693 - 706
  • [47] T2FELA: Type-2 Fuzzy Extreme Learning Algorithm for Fast Training of Interval Type-2 TSK Fuzzy Logic System
    Deng, Zhaohong
    Choi, Kup-Sze
    Cao, Longbing
    Wang, Shitong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (04) : 664 - 676
  • [48] The Construction of Type-2 Fuzzy Reasoning Relations for Type-2 Fuzzy Logic Systems
    Zhao, Shan
    Li, Hongxing
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [49] Hybrid Learning for Interval Type-2 Intuitionistic Fuzzy Logic Systems as Applied to Identification and Prediction Problems
    Eyoh, Imo
    John, Robert
    De Maere, Geert
    Kayacan, Erdal
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (05) : 2672 - 2685
  • [50] An Interval Type-2 Fuzzy System with Hybrid Intelligent Learning
    Meesad, Phayung
    2014 4TH WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES (WICT), 2014, : 263 - 268