Numerical variational approach for vortex solitons in nonlinear Schrodinger equation

被引:0
|
作者
Arce, Ismael [1 ]
Gomez-Escoto, Rafael [1 ]
Lopez-Aguayo, Servando [2 ]
机构
[1] Univ El Salvador, Escuela Fis, San Salvador, El Salvador
[2] Tecnol Monterrey, Escuela Ingn & Ciencias, Monterrey, Mexico
关键词
Soliton; vortex; nonlocal; variational method; Rayleigh-Ritz; PROPAGATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the generation and dynamics of asymmetric vortex solitons in nonlocal media described with an additional parameter that models the degree of azimuthal asymmetry. The main properties of vortex solitons are investigated analytically and numerically, in the numerical case we use a recently introduced numerical variational method based on the Rayleigh-Ritz optimization principle, we find that nonlocality and the degree of asymmetry can stabilize the proposed vortex solitons. We corroborate the results reported by using spectral techniques.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [1] A variational approach to the nonlinear Schrodinger equation
    Anderson, D
    Lisak, M
    [J]. PHYSICA SCRIPTA, 1996, T63 : 69 - 74
  • [2] Variational approximations for traveling solitons in a discrete nonlinear Schrodinger equation
    Syafwan, M.
    Susanto, H.
    Cox, S. M.
    Malomed, B. A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [3] Vortex Spatial Solitons to a Nonlinear Schrodinger Equation with Varying Coefficients
    徐四六
    梁检初
    李忠明
    [J]. Communications in Theoretical Physics, 2011, 56 (12) : 1105 - 1110
  • [4] Optical solitons and Peregrine solitons for nonlinear Schrodinger equation by variational iteration method
    Wazwaz, Abdul-Majid
    Kaur, Lakhveer
    [J]. OPTIK, 2019, 179 : 804 - 809
  • [5] Vortex and cluster solitons in nonlocal nonlinear fractional Schrodinger equation
    Wang, Qing
    Liang, Guo
    [J]. JOURNAL OF OPTICS, 2020, 22 (05)
  • [6] Vortex Spatial Solitons to a Nonlinear Schrodinger Equation with Varying Coefficients
    Xu Si-Liu
    Liang Jian-Chu
    Li Zhong-Ming
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1105 - 1110
  • [7] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [8] VORTEX SOLITONS FOR 2D FOCUSING NONLINEAR SCHRODINGER EQUATION
    Mizumachi, Tetsu
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (04) : 431 - 450
  • [9] Variational approach for breathers in a nonlinear fractional Schrodinger equation
    Chen, Manna
    Guo, Qi
    Lu, Daquan
    Hu, Wei
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 71 : 73 - 81
  • [10] Variational approximations for twisted solitons in a parametrically driven discrete nonlinear Schrodinger equation
    Syafwan, M.
    Efendi
    Arifin, N.
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS, SCIENCE AND EDUCATION 2017 (ICMSE2017), 2018, 983