VORTEX SOLITONS FOR 2D FOCUSING NONLINEAR SCHRODINGER EQUATION

被引:0
|
作者
Mizumachi, Tetsu [1 ]
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study standing wave solutions of the form e(i(omega t+m theta))phi(omega)(r) to the nonlinear Schrodinger equation iu(t) + Delta u + vertical bar u vertical bar(p-1)u = 0 for x is an element of R-2 and t > 0, where (r, theta) are polar coordinates and m is an element of N boolean OR {0}. We prove that standing waves which have no node are unique for each rrt and that they are unstable if p > 3.
引用
收藏
页码:431 / 450
页数:20
相关论文
共 50 条
  • [1] Interaction with an obstacle in the 2D focusing nonlinear Schrodinger equation
    Landoulsi, Oussama
    Roudenko, Svetlana
    Yang, Kai
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (05)
  • [2] Bipolar solitons of the focusing nonlinear Schrodinger equation
    Liu, Zhongxuan
    Feng, Qi
    Lin, Chengyou
    Chen, Zhaoyang
    Ding, Yingchun
    [J]. PHYSICA B-CONDENSED MATTER, 2016, 501 : 117 - 122
  • [3] FOCUSING NONLINEAR SCHRODINGER-EQUATION WITH INFINITELY MANY SOLITONS
    KAMVISSIS, S
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) : 4175 - 4180
  • [4] Numerical variational approach for vortex solitons in nonlinear Schrodinger equation
    Arce, Ismael
    Gomez-Escoto, Rafael
    Lopez-Aguayo, Servando
    [J]. 2019 IEEE 39TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN XXXIX), 2019, : 19 - 23
  • [5] Vortex Spatial Solitons to a Nonlinear Schrodinger Equation with Varying Coefficients
    徐四六
    梁检初
    李忠明
    [J]. Communications in Theoretical Physics, 2011, 56 (12) : 1105 - 1110
  • [6] Vortex and cluster solitons in nonlocal nonlinear fractional Schrodinger equation
    Wang, Qing
    Liang, Guo
    [J]. JOURNAL OF OPTICS, 2020, 22 (05)
  • [7] Vortex Spatial Solitons to a Nonlinear Schrodinger Equation with Varying Coefficients
    Xu Si-Liu
    Liang Jian-Chu
    Li Zhong-Ming
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1105 - 1110
  • [8] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [9] Continuum limit of 2D fractional nonlinear Schrodinger equation
    Choi, Brian
    Aceves, Alejandro
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (02)
  • [10] Direct and inverse scattering for nonlinear Schrodinger equation in 2D
    Serov, Valery
    Harju, Markus
    Fotopoulos, Georgios
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)