VORTEX SOLITONS FOR 2D FOCUSING NONLINEAR SCHRODINGER EQUATION

被引:0
|
作者
Mizumachi, Tetsu [1 ]
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study standing wave solutions of the form e(i(omega t+m theta))phi(omega)(r) to the nonlinear Schrodinger equation iu(t) + Delta u + vertical bar u vertical bar(p-1)u = 0 for x is an element of R-2 and t > 0, where (r, theta) are polar coordinates and m is an element of N boolean OR {0}. We prove that standing waves which have no node are unique for each rrt and that they are unstable if p > 3.
引用
收藏
页码:431 / 450
页数:20
相关论文
共 50 条
  • [21] NONLINEAR VORTEX EXCITATIONS (SOLITONS) IN A 2D MAGNETIC MATERIAL OF THE YBACUO TYPE
    BARYAKHTAR, VG
    IVANOV, BA
    JETP LETTERS, 1992, 55 (10) : 624 - 626
  • [22] HIGHER-ORDER NONLINEAR SCHRODINGER EQUATION IN 2D CASE
    Hayashi, Nakao
    Naumkin, Pavel, I
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (01) : 15 - 37
  • [23] Asymptotics for the fourth-order nonlinear Schrodinger equation in 2D
    Naumkin, Pavel, I
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (01)
  • [24] Low regularity solutions for a 2D quadratic nonlinear Schrodinger equation
    Bejenaru, Ioan
    De Silva, Daniela
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) : 5805 - 5830
  • [25] On the conservative finite difference scheme for 2D nonlinear Schrodinger equation
    Kir'yanov, Yu.F.
    Kudryavtseva, M.L.
    Maslov, M.V.
    Shestakova, I.V.
    Computer Physics Communications, 1999, 121
  • [26] Self-Similar Vortex Solitons for the Distributed-Coefficient Nonlinear Schrodinger Equation
    Zhao Bi
    Dai Chao-Qing
    Zhang Jie-Fang
    CHINESE PHYSICS LETTERS, 2012, 29 (08)
  • [27] Fast Petviashvili-Hankel method for vortex solitons in the generalized nonlinear Schrodinger equation
    Ramesh, Rohan
    Lopez-Aguayo, Servando
    JOURNAL OF OPTICS, 2020, 22 (02)
  • [28] The semiclassical focusing nonlinear Schrodinger equation
    Buckingham, Robert
    Tovbis, Alexander
    Venakides, Stephanos
    Zhou, Xin
    RECENT ADVANCES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 65 : 47 - 80
  • [29] Interaction with an obstacle in the 2D focusing nonlinear Schrödinger equation
    Oussama Landoulsi
    Svetlana Roudenko
    Kai Yang
    Advances in Computational Mathematics, 2023, 49
  • [30] Vortex dynamics in the nonlinear Schrodinger equation
    Quist, MJ
    PHYSICAL REVIEW B, 1999, 60 (06): : 4240 - 4244