HIGHER-ORDER NONLINEAR SCHRODINGER EQUATION IN 2D CASE

被引:0
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel, I [2 ]
机构
[1] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
关键词
Higher-order Schrodinger; critical problem; asymptotic behavior; two dimensional; LONG-RANGE SCATTERING; GLOBAL EXISTENCE; LARGE TIME; ASYMPTOTICS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the higher-order nonlinear Schrodinger equation in two dimensional case {i partial derivative(t)u( + )b/2 Delta u- 1/4 Delta(2)u = lambda vertical bar u vertical bar u, t > 0,x is an element of R(2. )u( 0 - x) = u0 (x), x is an element of R-2, where lambda is an element of R, b > 0. We develop the factorization techniques for studying the large time asymptotics of solutions to the above Cauchy problem. We prove that the asymptotics has a modified character.
引用
收藏
页码:15 / 37
页数:23
相关论文
共 50 条
  • [1] Higher-order derivative nonlinear Schrodinger equation in the critical case
    Naumkin, Pavel I.
    Perez, Jhon J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
  • [2] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [3] Collapse for the higher-order nonlinear Schrodinger equation
    Achilleos, V.
    Diamantidis, S.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Karachalios, N. I.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 57 - 68
  • [4] A higher-order perturbation analysis of the nonlinear Schrodinger equation
    Bonetti, J.
    Hernandez, S. M.
    Fierens, P., I
    Grosz, D. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 152 - 161
  • [5] Painleve analysis of a higher-order nonlinear Schrodinger equation
    Sakovich, SY
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) : 2527 - 2529
  • [6] ASYMPTOTICS FOR THE HIGHER-ORDER DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Naumkin, Pavel, I
    Sanchez-Suarez, Isahi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1447 - 1478
  • [7] A coupled higher-order nonlinear Schrodinger equation including higher-order bright and dark solitons
    Kim, JB
    ETRI JOURNAL, 2001, 23 (01) : 9 - 15
  • [8] Exact soliton solutions for the higher-order nonlinear Schrodinger equation
    Li, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (08): : 1225 - 1237
  • [9] Hirota bilinearization of coupled higher-order nonlinear Schrodinger equation
    Nandy, Sudipta
    Sarma, Debojit
    Barthakur, Abhijit
    Borah, Abhijit
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3386 - 3389
  • [10] Exact analytical solutions of higher-order nonlinear Schrodinger equation
    Wang, Hongcheng
    Liang, Jianchu
    Chen, Guihua
    Zhou, Ling
    Ling, Dongxiong
    Liu, Minxia
    OPTIK, 2017, 131 : 438 - 445