VORTEX SOLITONS FOR 2D FOCUSING NONLINEAR SCHRODINGER EQUATION

被引:0
|
作者
Mizumachi, Tetsu [1 ]
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study standing wave solutions of the form e(i(omega t+m theta))phi(omega)(r) to the nonlinear Schrodinger equation iu(t) + Delta u + vertical bar u vertical bar(p-1)u = 0 for x is an element of R-2 and t > 0, where (r, theta) are polar coordinates and m is an element of N boolean OR {0}. We prove that standing waves which have no node are unique for each rrt and that they are unstable if p > 3.
引用
收藏
页码:431 / 450
页数:20
相关论文
共 50 条
  • [31] Finite Time Extinction for Nonlinear Schrodinger Equation in 1D and 2D
    Carles, Remi
    Ozawa, Tohru
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (05) : 897 - 917
  • [32] Moving solitons in the discrete nonlinear Schrodinger equation
    Oxtoby, O. F.
    Barashenkov, I. V.
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [33] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [34] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079
  • [35] Chirped solitons in derivative nonlinear Schrodinger equation
    Justin, Mibaile
    Hubert, Malwe Boudoue
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 49 - 54
  • [36] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [37] Solitons in a modified discrete nonlinear Schrodinger equation
    Molina, Mario I.
    SCIENTIFIC REPORTS, 2018, 8
  • [38] Spinning solitons of a modified nonlinear Schrodinger equation
    Brihaye, Y
    Hartmann, B
    Zakrzewski, WJ
    PHYSICAL REVIEW D, 2004, 69 (08): : 4
  • [39] Dispersive shock wave, generalized Laguerre polynomials, and asymptotic solitons of the focusing nonlinear Schrodinger equation
    Kotlyarov, Vladimir
    Minakov, Alexander
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
  • [40] Bright solitons of generalized nonlinear Schrodinger equation
    Jasinski, J
    OPTICS COMMUNICATIONS, 1999, 172 (1-6) : 325 - 333