Solitons in a modified discrete nonlinear Schrodinger equation

被引:4
|
作者
Molina, Mario I. [1 ,2 ]
机构
[1] Univ Chile, Dept Fis, Fac Ciencias, Casilla 653, Santiago, Chile
[2] Univ Chile, MSI Nucleus Adv Opt, Fac Ciencias, Casilla 653, Santiago, Chile
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
RECURRENCE PHENOMENA; LOCALIZED MODES; ELECTRON;
D O I
10.1038/s41598-018-20490-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the bulk and surface nonlinear modes of a modified one-dimensional discrete nonlinear Schrodinger (mDNLS) equation. A linear and a modulational stability analysis of the lowest-order modes is carried out. While for the fundamental bulk mode there is no power threshold, the fundamental surface mode needs a minimum power level to exist. Examination of the time evolution of discrete solitons in the limit of strongly localized modes, suggests ways to manage the Peierls-Nabarro barrier, facilitating in this way a degree of soliton steering. The long-time propagation of an initially localized excitation shows that, at long evolution times, nonlinear effects become negligible and as a result, the propagation becomes ballistic. The qualitative similarity of the results for the mDNLS to the ones obtained for the standard DNLS, suggests that this kind of discrete soliton is an robust entity capable of transporting an excitation across a generic discrete medium that models several systems of interest.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Moving solitons in the discrete nonlinear Schrodinger equation
    Oxtoby, O. F.
    Barashenkov, I. V.
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [2] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [3] Spinning solitons of a modified nonlinear Schrodinger equation
    Brihaye, Y
    Hartmann, B
    Zakrzewski, WJ
    PHYSICAL REVIEW D, 2004, 69 (08): : 4
  • [4] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [5] Variational approximations for traveling solitons in a discrete nonlinear Schrodinger equation
    Syafwan, M.
    Susanto, H.
    Cox, S. M.
    Malomed, B. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [6] Solitons in a modified discrete nonlinear Schrödinger equation
    Mario I. Molina
    Scientific Reports, 8
  • [7] Scattering of Discrete Solitons from an Impurity in the Saturable Nonlinear Schrodinger Equation
    Tsoplefack, J.
    Palmero, F.
    Provata, A.
    Frantzeskakis, D. J.
    Cuevas-Maraver, J.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [8] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [9] Solitons in the discrete nonpolynomial Schrodinger equation
    Maluckov, Aleksandra
    Hadzievski, Ljupco
    Malomed, Boris A.
    Salasnich, Luca
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [10] Discrete Nonlinear Schrodinger Equation and Polygonal Solitons with Applications to Collapsed Proteins
    Molkenthin, Nora
    Hu, Shuangwei
    Niemi, Antti J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (07)