Solitons in a modified discrete nonlinear Schrodinger equation

被引:4
|
作者
Molina, Mario I. [1 ,2 ]
机构
[1] Univ Chile, Dept Fis, Fac Ciencias, Casilla 653, Santiago, Chile
[2] Univ Chile, MSI Nucleus Adv Opt, Fac Ciencias, Casilla 653, Santiago, Chile
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
RECURRENCE PHENOMENA; LOCALIZED MODES; ELECTRON;
D O I
10.1038/s41598-018-20490-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the bulk and surface nonlinear modes of a modified one-dimensional discrete nonlinear Schrodinger (mDNLS) equation. A linear and a modulational stability analysis of the lowest-order modes is carried out. While for the fundamental bulk mode there is no power threshold, the fundamental surface mode needs a minimum power level to exist. Examination of the time evolution of discrete solitons in the limit of strongly localized modes, suggests ways to manage the Peierls-Nabarro barrier, facilitating in this way a degree of soliton steering. The long-time propagation of an initially localized excitation shows that, at long evolution times, nonlinear effects become negligible and as a result, the propagation becomes ballistic. The qualitative similarity of the results for the mDNLS to the ones obtained for the standard DNLS, suggests that this kind of discrete soliton is an robust entity capable of transporting an excitation across a generic discrete medium that models several systems of interest.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Discrete solitons for periodic discrete nonlinear Schrodinger equations
    Mai, Ali
    Zhou, Zhan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 34 - 41
  • [22] Stability of discrete solitons in nonlinear Schrodinger lattices
    Pelinovsky, DE
    Kevrekidis, PG
    Frantzeskakis, DJ
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (1-2) : 1 - 19
  • [23] EXISTENCE OF SOLITONS FOR DISCRETE NONLINEAR SCHRODINGER EQUATIONS
    Shi, Haiping
    Zhang, Yuanbiao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [24] Asymptotics of solutions to the modified nonlinear Schrodinger equation: Solitons on a nonvanishing continuous background
    Kitaev, AV
    Vartanian, AH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (04) : 787 - 832
  • [25] Discrete nonlocal nonlinear Schrodinger equation on graphs: Dynamics of PT-symmetric solitons in discrete networks
    Akramov, M.
    Khashimova, F.
    Matrasulov, D.
    PHYSICS LETTERS A, 2023, 457
  • [26] Ultrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrodinger equation with variable coefficient
    Musammil, N. M.
    Porsezian, K.
    Nithyanandan, K.
    Subha, P. A.
    Dinda, P. Tchofo
    OPTICAL FIBER TECHNOLOGY, 2017, 37 : 11 - 20
  • [27] Bipolar solitons of the focusing nonlinear Schrodinger equation
    Liu, Zhongxuan
    Feng, Qi
    Lin, Chengyou
    Chen, Zhaoyang
    Ding, Yingchun
    PHYSICA B-CONDENSED MATTER, 2016, 501 : 117 - 122
  • [28] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079
  • [29] Chirped solitons in derivative nonlinear Schrodinger equation
    Justin, Mibaile
    Hubert, Malwe Boudoue
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 49 - 54
  • [30] The existence of discrete solitons for the discrete coupled nonlinear Schrodinger system
    Huang, Meihua
    Zhou, Zhan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)