Solitons in a modified discrete nonlinear Schrodinger equation

被引:4
|
作者
Molina, Mario I. [1 ,2 ]
机构
[1] Univ Chile, Dept Fis, Fac Ciencias, Casilla 653, Santiago, Chile
[2] Univ Chile, MSI Nucleus Adv Opt, Fac Ciencias, Casilla 653, Santiago, Chile
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
RECURRENCE PHENOMENA; LOCALIZED MODES; ELECTRON;
D O I
10.1038/s41598-018-20490-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the bulk and surface nonlinear modes of a modified one-dimensional discrete nonlinear Schrodinger (mDNLS) equation. A linear and a modulational stability analysis of the lowest-order modes is carried out. While for the fundamental bulk mode there is no power threshold, the fundamental surface mode needs a minimum power level to exist. Examination of the time evolution of discrete solitons in the limit of strongly localized modes, suggests ways to manage the Peierls-Nabarro barrier, facilitating in this way a degree of soliton steering. The long-time propagation of an initially localized excitation shows that, at long evolution times, nonlinear effects become negligible and as a result, the propagation becomes ballistic. The qualitative similarity of the results for the mDNLS to the ones obtained for the standard DNLS, suggests that this kind of discrete soliton is an robust entity capable of transporting an excitation across a generic discrete medium that models several systems of interest.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [42] Small Amplitude Solitons on a Pedestal in the Modified Nonlinear Schrodinger Equation for Negative Index Materials
    Joseph, Ancemma
    Porsezian, Kuppuswamy
    Wadati, Miki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (04)
  • [43] An exact solution for the modified nonlinear Schrodinger's equation for Davydov solitons in α-helix proteins
    Biswas, Anjan
    Moran, Allison
    Milovic, Daniela
    Majid, Fayequa
    Biswas, Keka C.
    MATHEMATICAL BIOSCIENCES, 2010, 227 (01) : 68 - 71
  • [44] Stability of discrete dark solitons in nonlinear Schrodinger lattices
    Pelinovsky, D. E.
    Kevrekidis, P. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (18)
  • [45] Gap solitons in periodic discrete nonlinear Schrodinger equations
    Pankov, A
    NONLINEARITY, 2006, 19 (01) : 27 - 40
  • [46] Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrodinger's equation for Davydov solitons
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2018, 32 (07) : 858 - 873
  • [47] Scattering of solitons and dark solitons by potential walls in the nonlinear Schrodinger equation
    Sakaguchi, H
    Tamura, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (01) : 292 - 298
  • [48] Solitons interaction and their stability based on Nonlinear Schrodinger equation
    Shahzad, Asim
    Zafrullah, M.
    2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009), 2009, : 305 - +
  • [49] Breathers for the Discrete Nonlinear Schrodinger Equation with Nonlinear Hopping
    Karachalios, N. I.
    Sanchez-Rey, B.
    Kevrekidis, P. G.
    Cuevas, J.
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (02) : 205 - 239
  • [50] Evolution of solitons of nonlinear Schrodinger equation with variable parameters
    文双春
    徐文成
    郭旗
    刘颂豪
    Science China Mathematics, 1997, (12) : 1300 - 1304