The fractional discrete nonlinear Schrodinger equation

被引:34
|
作者
Molina, Mario, I [1 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Fis, Casilla 653, Santiago, Chile
关键词
Fractional laplacian; Dnls equation; Nonlinear modes; Stability; Transport; DIFFUSION-EQUATIONS; SOLITONS; DYNAMICS; WAVES;
D O I
10.1016/j.physleta.2019.126180
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine a fractional version of the discrete nonlinear Schrodinger (dnls) equation, where the usual discrete laplacian is replaced by a fractional discrete laplacian. This leads to the replacement of the usual nearest-neighbor interaction to a long-range intersite coupling that decreases asymptotically as a power-law. For the linear case, we compute both, the spectrum of plane waves and the mean square displacement of an initially localized excitation in closed form, in terms of regularized hypergeometric functions, as a function of the fractional exponent. In the nonlinear case, we compute numerically the low-lying nonlinear modes of the system and their stability, as a function of the fractional exponent of the discrete laplacian. The selftrapping transition threshold of an initially localized excitation shifts to lower values as the exponent is decreased and, for a fixed exponent and zero nonlinearity, the trapped fraction remains greater than zero. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The two-dimensional fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (33)
  • [2] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [3] Discrete Fractional Solutions of the Radial Equation of the Fractional Schrodinger Equation
    Yilmazer, Resat
    Ozturk, Okkes
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [4] On the solution of the fractional nonlinear Schrodinger equation
    Rida, S. Z.
    EI-Sherbiny, H. M.
    Arafa, A. A. M.
    PHYSICS LETTERS A, 2008, 372 (05) : 553 - 558
  • [5] A NONLINEAR SCHRODINGER EQUATION WITH FRACTIONAL NOISE
    Deya, Aurelien
    Schaeffer, Nicolas
    Thomann, Laurent
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) : 4375 - 4422
  • [6] Symmetries of the discrete nonlinear Schrodinger equation
    Heredero, RH
    Levi, D
    Winternitz, P
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 729 - 737
  • [7] Nonequilibrium discrete nonlinear Schrodinger equation
    Iubini, Stefano
    Lepri, Stefano
    Politi, Antonio
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [8] Discrete nonlinear Schrodinger equation with defects
    Trombettoni, A
    Smerzi, A
    Bishop, AR
    PHYSICAL REVIEW E, 2003, 67 (01): : 166071 - 166071
  • [9] On the integrability of the discrete nonlinear Schrodinger equation
    Levi, D.
    Petrera, M.
    Scimiterna, C.
    EPL, 2008, 84 (01)
  • [10] Breathers for the Discrete Nonlinear Schrodinger Equation with Nonlinear Hopping
    Karachalios, N. I.
    Sanchez-Rey, B.
    Kevrekidis, P. G.
    Cuevas, J.
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (02) : 205 - 239