Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation

被引:85
|
作者
Carretero-Gonzalez, R. [1 ]
Talley, J. D.
Chong, C.
Malomed, B. A.
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[2] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[4] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
关键词
nonlinear Schrodinger equation; solitons; bifurcations; nonlinear lattices;
D O I
10.1016/j.physd.2006.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the existence and stability of localized Solutions in the one-dimensional discrete nonlinear Schrodinger (DNLS) equation with a combination of competing self-focusing cubic and defocusing quintic onsite nonlinearities. We produce a stability diagram for different families of soliton solutions that suggests the (co)existence of infinitely many branches of stable localized solutions. Bifurcations that occur with an increase in the coupling constant are studied in a numerical form. A variational approximation is developed for accurate prediction of the most fundamental and next-order solitons, together with their bifurcations. Salient properties of the model, which distinguish it from the well-known cubic DNLS equation, are the existence of two different types of symmetric solitons and stable asymmetric soliton solutions that are found in narrow regions of the parameter space. The asymmetric solutions appear from and disappear back into the symmetric ones via loops of forward and backward pitchfork bifurcations. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [1] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [2] Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrodinger lattices
    Chong, C.
    Carretero-Gonzalez, R.
    Malomed, B. A.
    Kevrekidis, P. G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (02) : 126 - 136
  • [3] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [4] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (05)
  • [5] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    [J]. ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [6] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    [J]. PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [7] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    [J]. 2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96
  • [8] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 137
  • [9] Solitons for the cubic-quintic nonlinear Schrodinger equation with Raman effect in nonlinear optics
    Wang, Ping
    Shang, Tao
    Feng, Li
    Du, Yingjie
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) : 1117 - 1126
  • [10] Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation
    Abdullaev, F. Kh.
    Bouketir, A.
    Messikh, A.
    Umarov, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) : 54 - 61