Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation

被引:86
|
作者
Carretero-Gonzalez, R. [1 ]
Talley, J. D.
Chong, C.
Malomed, B. A.
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[2] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[4] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
关键词
nonlinear Schrodinger equation; solitons; bifurcations; nonlinear lattices;
D O I
10.1016/j.physd.2006.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the existence and stability of localized Solutions in the one-dimensional discrete nonlinear Schrodinger (DNLS) equation with a combination of competing self-focusing cubic and defocusing quintic onsite nonlinearities. We produce a stability diagram for different families of soliton solutions that suggests the (co)existence of infinitely many branches of stable localized solutions. Bifurcations that occur with an increase in the coupling constant are studied in a numerical form. A variational approximation is developed for accurate prediction of the most fundamental and next-order solitons, together with their bifurcations. Salient properties of the model, which distinguish it from the well-known cubic DNLS equation, are the existence of two different types of symmetric solitons and stable asymmetric soliton solutions that are found in narrow regions of the parameter space. The asymmetric solutions appear from and disappear back into the symmetric ones via loops of forward and backward pitchfork bifurcations. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [21] Dynamical stabilization of solitons in cubic-quintic nonlinear Schrodinger model
    Abdullaev, FK
    Garnier, J
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [22] Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrodinger equation
    Crosta, M.
    Fratalocchi, A.
    Trillo, S.
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [23] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964
  • [24] Cusp solitons in the cubic quintic nonlinear Schrodinger equation
    Palacios, SL
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2001, 10 (03) : 293 - 296
  • [25] Modulation instability gain and nonlinear modes generation in discrete cubic-quintic nonlinear Schrodinger equation
    Abbagari, Souleymanou
    Houwe, Alphonse
    Saliou, Youssoufa
    Akinyemi, Lanre
    Rezazadeh, Hadi
    Bouetou, Thomas Bouetou
    PHYSICS LETTERS A, 2022, 456
  • [26] New optical solitons in high-order dispersive cubic-quintic nonlinear Schrodinger equation
    Li, HM
    Xu, YS
    Lin, J
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 829 - 832
  • [27] Exact solutions of a two-dimensional cubic-quintic discrete nonlinear Schrodinger equation
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    PHYSICA SCRIPTA, 2011, 84 (06)
  • [28] Bright solitons of the nonautonomous cubic-quintic nonlinear Schrodinger equation with sign-reversal nonlinearity
    Loomba, Shally
    Pal, Ritu
    Kumar, C. N.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [29] Solitons for the cubic-quintic nonlinear Schrodinger equation with time- and space-modulated coefficients
    Belmonte-Beitia, J.
    Cuevas, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (16)
  • [30] Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrodinger equations
    Chen, Shihua
    Baronio, Fabio
    Soto-Crespo, Jose M.
    Liu, Yi
    Grelu, Philippe
    PHYSICAL REVIEW E, 2016, 93 (06)