Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on

被引:0
|
作者
Killip, Rowan [1 ]
Oh, Tadahiro [2 ,3 ]
Pocovnicu, Oana [4 ,5 ,6 ,7 ]
Visan, Monica [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[5] Inst Adv Study, Sch Math, Einstein Dr, Princeton, NJ 08540 USA
[6] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[7] Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
GLOBAL WELL-POSEDNESS; 3-DIMENSIONAL SPINNING SOLITONS; GROSS-PITAEVSKII EQUATION; BLOW-UP; CAUCHY-PROBLEM; GROUND-STATE; INSTABILITY; UNIQUENESS; EXISTENCE; NLS;
D O I
10.1007/s00205-017-1109-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the cubic-quintic nonlinear Schrodinger equation: In the first part of the paper, we analyze the one-parameter family of ground state solitons associated to this equation with particular attention to the shape of the associated mass/energy curve. Additionally, we are able to characterize the kernel of the linearized operator about such solitons and to demonstrate that they occur as optimizers for a one-parameter family of inequalities of Gagliardo-Nirenberg type. Building on this work, in the latter part of the paper we prove that scattering holds for solutions belonging to the region of the mass/energy plane where the virial is positive. We show that this region is partially bounded by solitons also by rescalings of solitons (which are not soliton solutions in their own right). The discovery of rescaled solitons in this context is new and highlights an unexpected limitation of any virial-based methodology.
引用
收藏
页码:469 / 548
页数:80
相关论文
共 50 条
  • [1] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [2] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [3] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (05)
  • [4] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    [J]. ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [5] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    [J]. PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [6] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    [J]. 2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96
  • [7] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 137
  • [8] Solitons for the cubic-quintic nonlinear Schrodinger equation with Raman effect in nonlinear optics
    Wang, Ping
    Shang, Tao
    Feng, Li
    Du, Yingjie
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) : 1117 - 1126
  • [9] A note on grey solitons of the cubic-quintic Schrodinger equation
    Agüero, M
    [J]. PHYSICS LETTERS A, 2001, 278 (05) : 260 - 266
  • [10] On the existence of dark solitons in a cubic-quintic nonlinear Schrodinger equation with a periodic potential
    Torres, Pedro J.
    Konotop, Vladimir V.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 1 - 9